You are viewing a preview of this lesson. Sign in to start learning
Back to 2026 Modern AI Search & RAG Roadmap

Classic RAG Pipeline

Implement the standard retrieve-augment-generate workflow with single-query retrieval and context injection.

Classic RAG Pipeline

Master the fundamentals of Retrieval-Augmented Generation with free flashcards and spaced repetition practice. This lesson covers document ingestion, vector embeddings, similarity search, and context-aware generationβ€”essential concepts for building modern AI search systems that combine the power of retrieval with generative AI.

🎯 Welcome to Classic RAG

Retrieval-Augmented Generation (RAG) has revolutionized how we build AI applications that need to access external knowledge. Unlike standalone language models that rely solely on training data, RAG systems dynamically retrieve relevant information and use it to generate more accurate, up-to-date responses.

Think of RAG as giving your AI a reference library. Instead of memorizing everything (which would be impossible for constantly changing information), the AI learns to look up relevant documents first, then generates answers based on what it finds. This approach solves critical problems like hallucinations, outdated information, and lack of domain-specific knowledge.

In this lesson, we'll dissect the classic RAG pipeline step-by-step, understanding each component and how they work together to create intelligent, knowledge-grounded AI systems.

πŸ—οΈ The Five Core Stages

The classic RAG pipeline consists of five interconnected stages:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                    CLASSIC RAG PIPELINE                     β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

    πŸ“„ Stage 1: Document Ingestion
           β”‚
           ↓
    βœ‚οΈ Stage 2: Chunking & Processing
           β”‚
           ↓
    πŸ”’ Stage 3: Embedding Generation
           β”‚
           ↓
    πŸ’Ύ Stage 4: Vector Storage & Indexing
           β”‚
           ↓  (User Query Arrives)
           β”‚
    πŸ” Stage 5: Retrieval & Generation
           β”‚
           β”œβ”€β”€β†’ Query Embedding
           β”‚
           β”œβ”€β”€β†’ Similarity Search
           β”‚
           β”œβ”€β”€β†’ Context Retrieval
           β”‚
           └──→ πŸ€– LLM Generation
                     β”‚
                     ↓
                βœ… Final Answer

Let's explore each stage in detail.

πŸ“„ Stage 1: Document Ingestion

Document ingestion is the process of loading raw data into your RAG system. This stage handles diverse data formats and prepares them for downstream processing.

What Gets Ingested?

  • Text documents: PDFs, Word files, plain text
  • Web content: HTML pages, markdown files
  • Structured data: JSON, CSV, database records
  • Code repositories: Source files, documentation
  • Multimedia metadata: Transcripts, captions, descriptions

Key Considerations

πŸ’‘ Tip: Always preserve metadata during ingestion (source URL, creation date, author, section headers). This metadata becomes crucial for filtering and citation later.

FormatParser LibraryKey Challenge
PDFPyPDF2, pdfplumberLayout preservation
HTMLBeautifulSoup, TrafilaturaExtracting main content
Wordpython-docxStyle/format handling
Markdownmistune, markdown-itCode block parsing

⚠️ Watch out: PDFs with scanned images require OCR (Optical Character Recognition) preprocessing. Without it, you'll extract nothing from image-based PDFs!

βœ‚οΈ Stage 2: Chunking & Processing

Chunking divides long documents into smaller, semantically coherent pieces. This is critical because:

  1. Embedding models have token limits (typically 512-8192 tokens)
  2. Retrieval precision improves with focused chunks
  3. Generation context windows need manageable inputs

Chunking Strategies

StrategyHow It WorksBest For
Fixed-sizeSplit every N characters/tokensSimple, uniform content
Sentence-basedSplit on sentence boundariesNatural text flow
Paragraph-basedSplit on paragraph breaksArticles, essays
SemanticSplit when topic shiftsLong-form documents
Document structureSplit on headers, sectionsTechnical docs, manuals

Chunk Overlap

Most effective chunking includes overlap between consecutive chunks:

Without Overlap:
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Chunk 1    β”‚β”‚  Chunk 2    β”‚β”‚  Chunk 3    β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
     ↑ Information at boundary might be split ↑

With Overlap (Recommended):
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Chunk 1    β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”˜
          β”‚β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
          β”‚β”‚  Chunk 2    β”‚
          β””β”΄β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜
                 β”‚β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                 β”‚β”‚  Chunk 3    β”‚
                 β””β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
     ↑ Context preserved across boundaries ↑

πŸ’‘ Tip: A typical configuration is 500-1000 token chunks with 100-200 token overlap (20-25% overlap ratio).

Text Cleaning

Before chunking, apply preprocessing:

  • Remove excessive whitespace, special characters
  • Normalize unicode characters
  • Handle code blocks specially (preserve indentation)
  • Extract and preserve tables in structured format

πŸ”’ Stage 3: Embedding Generation

Embeddings are numerical vector representations of text that capture semantic meaning. Similar concepts have similar vectors, enabling mathematical similarity comparisons.

How Embeddings Work

An embedding model (like OpenAI's text-embedding-ada-002, Cohere's embeddings, or open-source models like sentence-transformers) transforms text into a high-dimensional vector:

Text Input: "How do I reset my password?"
              ↓
    Embedding Model
              ↓
Vector: [0.023, -0.891, 0.445, ..., 0.112]
         ↑ 1536 dimensions (example) ↑

Why Embeddings Matter

Embeddings enable semantic search rather than keyword matching:

Search TypeQueryMatches
Keyword"python programming"Only exact phrase
Semantic"python programming""coding in python", "Python tutorials", "Snake scripting language"
ModelDimensionsMax TokensBest For
OpenAI ada-00215368191General purpose
Cohere embed-v31024512Multilingual
BGE-large-en1024512Open-source, high quality
E5-mistral-7b409632768Long context

πŸ’‘ Tip: Use the same embedding model for both document chunks and user queries! Mixing models breaks semantic similarity.

Batch Processing

For efficiency, embed chunks in batches:

## Process 100 chunks at a time
batch_size = 100
for i in range(0, len(chunks), batch_size):
    batch = chunks[i:i + batch_size]
    embeddings = embedding_model.embed(batch)
    store_embeddings(embeddings)

πŸ’Ύ Stage 4: Vector Storage & Indexing

Vector databases store embeddings and enable fast similarity search. Unlike traditional databases that query exact matches, vector databases find "nearby" vectors in high-dimensional space.

Vector Database Options

DatabaseTypeBest ForNotable Feature
PineconeManagedProduction scaleAuto-scaling
WeaviateOpen-sourceFlexible schemasGraphQL API
QdrantOpen-sourceHigh performanceRust-based speed
ChromaEmbeddedDevelopment, prototypingZero config
FAISSLibraryResearch, local useFacebook AI

Indexing Strategies

Vector databases use specialized index structures for fast search:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚         VECTOR INDEX TYPES                    β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                                               β”‚
β”‚  πŸ“Š FLAT (Exact)                             β”‚
β”‚  β”œβ”€ Brute force comparison                   β”‚
β”‚  β”œβ”€ 100% accurate                            β”‚
β”‚  └─ Slow for large datasets (>100K vectors)  β”‚
β”‚                                               β”‚
β”‚  🌳 HNSW (Approximate)                       β”‚
β”‚  β”œβ”€ Hierarchical graph structure             β”‚
β”‚  β”œβ”€ Fast queries (milliseconds)              β”‚
β”‚  └─ ~99% accuracy                            β”‚
β”‚                                               β”‚
β”‚  πŸ“¦ IVF (Approximate)                        β”‚
β”‚  β”œβ”€ Clusters vectors into groups             β”‚
β”‚  β”œβ”€ Search only relevant clusters            β”‚
β”‚  └─ Good balance of speed/accuracy           β”‚
β”‚                                               β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

πŸ’‘ Tip: HNSW (Hierarchical Navigable Small World) is the most popular index for RAG applicationsβ€”it offers excellent speed-accuracy tradeoff.

What Gets Stored

Each vector database entry typically contains:

  1. Vector embedding (the numerical representation)
  2. Original text chunk (for context retrieval)
  3. Metadata (source, page number, timestamp, etc.)
  4. Unique ID (for updating/deleting)

πŸ” Stage 5: Retrieval & Generation

This is where the magic happensβ€”combining retrieval with generation to produce accurate, grounded responses.

Step 5A: Query Embedding

When a user asks a question, embed it using the same model used for documents:

User Query: "What are the benefits of exercise?"
              ↓
    Embedding Model (same as documents)
              ↓
Query Vector: [0.156, -0.723, 0.891, ..., 0.034]

The vector database finds the top-k most similar document chunks using distance metrics:

MetricFormulaRangeInterpretation
Cosinecos(ΞΈ) = AΒ·B / (||A|| ||B||)-1 to 11 = identical direction
Euclidean√Σ(ai - bi)²0 to ∞0 = identical points
Dot ProductΞ£(ai Γ— bi)-∞ to ∞Higher = more similar

πŸ’‘ Tip: Cosine similarity is most common for text embeddings because it measures angle (semantic similarity) rather than magnitude.

Step 5C: Context Construction

Retrieved chunks are assembled into a context prompt:

--- Retrieved Context ---
[Chunk 1] Regular exercise improves cardiovascular health...
[Chunk 2] Physical activity reduces stress and anxiety...
[Chunk 3] Exercise strengthens bones and muscles...

--- User Question ---
What are the benefits of exercise?

--- Instructions ---
Answer the question using ONLY the provided context.
If the context doesn't contain the answer, say so.

Step 5D: LLM Generation

The context + question is sent to a large language model (GPT-4, Claude, Llama, etc.) which generates a grounded response:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  πŸ“₯ INPUT: Context + Question               β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚           ↓                                 β”‚
β”‚  πŸ€– LLM (GPT-4, Claude, etc.)              β”‚
β”‚           ↓                                 β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  πŸ“€ OUTPUT: Grounded Answer                 β”‚
β”‚  "Exercise offers multiple benefits:        β”‚
β”‚   1. Improves heart health                  β”‚
β”‚   2. Reduces stress                         β”‚
β”‚   3. Strengthens bones and muscles"         β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Retrieval Parameters

Top-k: How many chunks to retrieve

  • Too few (k=1-2): Might miss relevant information
  • Too many (k>10): Noise and cost increase
  • Sweet spot: k=3-5 for most applications

Similarity threshold: Minimum score to include

  • Filters out irrelevant chunks
  • Typical threshold: 0.7-0.8 for cosine similarity

Re-ranking: Optional second-stage scoring

  • Use a cross-encoder model to re-score retrieved chunks
  • More computationally expensive but more accurate
  • Useful when initial retrieval is noisy

πŸ“Š Example 1: Customer Support RAG

Let's walk through a complete RAG pipeline for a customer support system.

Setup

Documents: 500 support articles (FAQs, troubleshooting guides)

User Query: "My device won't connect to WiFi"

Pipeline Execution

StageActionOutput
1. IngestionLoad all support articles500 documents
2. ChunkingSplit into 750-token chunks, 150 overlap1,200 chunks
3. EmbeddingGenerate vectors with BGE-large-en1,200 vectors (1024-dim)
4. StorageStore in Qdrant with HNSW indexIndexed database
5a. Query EmbedEmbed user questionQuery vector (1024-dim)
5b. SearchFind top-5 chunks (cosine similarity)5 relevant chunks
5c. ContextAssemble prompt with chunksContext prompt
5d. GenerateGPT-4 generates responseStep-by-step solution

Retrieved Chunks (Top 3)

  1. Chunk #342 (similarity: 0.89): "WiFi connection issues: First, verify WiFi is enabled..."
  2. Chunk #127 (similarity: 0.85): "If device shows 'Cannot connect', check router settings..."
  3. Chunk #891 (similarity: 0.82): "Common WiFi problems include incorrect password..."

Generated Response

"To resolve WiFi connection issues: 1) Verify WiFi is enabled on your device, 2) Check if you're entering the correct password, 3) Restart your router if the issue persists..."

πŸ’‘ Why this works: The system retrieved exactly the right troubleshooting steps without the LLM needing to memorize every support article.

πŸ“Š Example 2: Code Documentation RAG

RAG excels at helping developers navigate large codebases.

Setup

Documents: Python library documentation (1,000 pages)

User Query: "How do I configure request timeouts?"

Chunking Strategy

For code documentation, use semantic chunking based on:

  • Function definitions
  • Class boundaries
  • Code examples as single units

Retrieved Context

## Chunk 1 (similarity: 0.91)
"""Configure timeouts using the timeout parameter:

import requests
response = requests.get('https://api.example.com',
                        timeout=5)  # 5-second timeout
"""

## Chunk 2 (similarity: 0.87)
"""For separate connect/read timeouts, use tuple:
timeout=(3.0, 10.0)  # 3s connect, 10s read
"""

Generated Response

"To configure request timeouts, pass the timeout parameter: requests.get(url, timeout=5) for a 5-second timeout. For granular control, use a tuple: timeout=(3.0, 10.0) where the first value is connection timeout and second is read timeout."

⚠️ Important: Code-specific RAG often benefits from hybrid searchβ€”combining semantic similarity with keyword matching for function names and technical terms.

πŸ“Š Example 3: Research Paper RAG

Academic RAG systems help researchers navigate vast scientific literature.

Setup

Documents: 10,000 research papers (PDFs with abstracts, full text)

User Query: "What are recent advances in transformer efficiency?"

Special Considerations

  1. Metadata filtering: Only search papers from 2024-2026
  2. Citation preservation: Track which paper each chunk comes from
  3. Section-aware chunking: Keep abstract, methodology, results separate

Retrieval with Filters

query_vector = embed("recent advances in transformer efficiency")

results = vector_db.search(
    vector=query_vector,
    top_k=5,
    filter={
        "year": {"$gte": 2024},
        "section": "results"
    }
)

Retrieved Papers

  1. "FlashAttention-3" (2025): "We reduce attention complexity to O(n)..."
  2. "Sparse Transformers" (2024): "By using local attention patterns..."
  3. "MoE-Transformers" (2025): "Mixture of experts reduces active parameters..."

Generated Summary

"Recent advances in transformer efficiency include: 1) FlashAttention-3 achieving linear complexity [Smith 2025], 2) Sparse attention patterns reducing computation [Jones 2024], 3) Mixture-of-Experts architectures activating only necessary parameters [Lee 2025]."

πŸ’‘ Advantage: RAG provides citations and recency that base models lack.

πŸ“Š Example 4: Multi-Modal RAG

Modern RAG systems handle more than just text.

Setup

Documents: Product catalog with images, descriptions, specifications

User Query: "Show me red backpacks under $50"

Multi-Modal Components

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  πŸ“Έ Image Embeddings                      β”‚
β”‚  (CLIP, other vision models)              β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  πŸ“ Text Embeddings                       β”‚
β”‚  (Standard text embedding models)         β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  πŸ”’ Structured Data                       β”‚
β”‚  (Price filters, category tags)           β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
           ↓
    Combined Search
           ↓
    Retrieved Products

Hybrid Retrieval

  1. Semantic search: "red backpacks" β†’ find relevant products
  2. Metadata filter: price < $50
  3. Image similarity: If user uploads image, match visually similar products

Result

System returns 5 backpacks that:

  • Match semantic description ("red", "backpack")
  • Meet price constraint ($35-$48)
  • Include product images and specs

The LLM then formats these into a natural response: "I found 5 red backpacks under $50: [Product list with descriptions]..."

⚠️ Common Mistakes

1. Using Different Embedding Models

❌ Wrong: Embed documents with model-A, query with model-B

βœ… Right: Use the same model for both

Why it fails: Different models create incompatible vector spaces. Similarity scores become meaningless.

2. Ignoring Chunk Size

❌ Wrong: 5,000-token chunks (exceeds most model limits)

βœ… Right: 500-1000 token chunks with overlap

Why it fails: Large chunks dilute relevant information; small chunks lose context.

3. No Metadata or Citations

❌ Wrong: Only store chunk text and vector

βœ… Right: Store source, page, timestamp, author, section

Why it fails: Users can't verify information or navigate to source documents.

4. Skipping Text Preprocessing

❌ Wrong: Feed raw OCR output with noise directly to embeddings

βœ… Right: Clean, normalize, and structure text first

Why it fails: Garbage in, garbage outβ€”poor quality text produces poor embeddings.

5. Not Testing Retrieval Quality

❌ Wrong: Assume top-k chunks are always relevant

βœ… Right: Measure retrieval metrics (recall, precision, MRR)

Why it fails: You won't know if your system retrieves the right information until you measure it.

6. Overloading Context Window

❌ Wrong: Retrieve 20 chunks, paste all into prompt

βœ… Right: Retrieve 3-5 most relevant, possibly re-rank

Why it fails: Too much context confuses the LLM and increases cost/latency.

7. No Fallback for Poor Retrieval

❌ Wrong: Always generate answer, even with irrelevant chunks

βœ… Right: Check similarity scores; if too low, respond "I don't have information on that"

Why it fails: Generates hallucinated answers when retrieval fails.

🎯 Key Takeaways

πŸ“‹ Classic RAG Pipeline Quick Reference

StageKey ActionCommon Tool
1. IngestionLoad documents, preserve metadataLangChain loaders
2. ChunkingSplit into 500-1000 tokens, 20% overlapRecursiveCharacterTextSplitter
3. EmbeddingConvert chunks to vectorsOpenAI, Cohere, BGE
4. StorageIndex vectors for similarity searchPinecone, Qdrant, Weaviate
5. RetrievalSearch (top-k=3-5) + generate with LLMGPT-4, Claude

🧠 Remember:

  • Same embedding model for documents and queries
  • Chunk overlap preserves context boundaries
  • Cosine similarity for semantic search
  • Store metadata for filtering and citations
  • Measure retrieval quality, not just generation quality

πŸ”„ RAG vs. Fine-Tuning

When should you use RAG instead of fine-tuning a model?

FactorRAGFine-Tuning
Data Updatesβœ… Easy (add new chunks)❌ Requires retraining
CostπŸ’° Lower (storage + API)πŸ’°πŸ’° Higher (GPU training)
Latency⚑ Slight overhead (retrieval)⚑⚑ Faster inference
Transparencyβœ… Shows source chunks❌ Black box answers
Domain Adaptationβœ… Excellentβœ…βœ… Best for style/format
Fact Updatesβœ…βœ… Instant❌ Slow retraining cycle

πŸ’‘ Best practice: Use RAG for knowledge-intensive tasks with changing information. Use fine-tuning for style, format, and reasoning patterns. Often, combining both yields optimal results!

πŸ€” Did You Know?

The term "Retrieval-Augmented Generation" was coined in a 2020 Meta AI paper, but the concept dates back to information retrieval + generation systems from the early 2000s. What changed? Modern embedding models and vector databases made semantic search practical at scale!

Interestingly, RAG systems can reduce hallucinations by 60-80% compared to pure generation, according to 2024 benchmarks. The key is that the LLM is constrained to ground its answers in retrieved context.

πŸ“š Further Study

  1. Original RAG Paper - Lewis et al., 2020: https://arxiv.org/abs/2005.11401
  2. LangChain RAG Documentation - Comprehensive implementation guide: https://python.langchain.com/docs/use_cases/question_answering/
  3. Vector Database Comparison - Benchmarks and feature comparison: https://benchmark.vectorview.ai/

Next Steps: Now that you understand the classic RAG pipeline, explore advanced techniques like hybrid search, re-ranking, query expansion, and multi-hop reasoning to build even more sophisticated RAG systems. Practice implementing each stage with real documents to solidify your understanding! πŸš€