You are viewing a preview of this lesson. Sign in to start learning
Back to Mastering AWS

Cloud Fundamentals & Infrastructure

Understanding AWS global infrastructure, regions, availability zones, and edge locations

Cloud Fundamentals & Infrastructure

Master the foundations of cloud computing with free flashcards and interactive practice exercises. This lesson covers essential cloud concepts, infrastructure components, and AWS global architectureโ€”critical knowledge for anyone beginning their AWS certification journey or building cloud-native applications.

Welcome to Cloud Computing ๐ŸŒฅ๏ธ

Cloud computing has revolutionized how organizations build, deploy, and scale technology solutions. Instead of purchasing and maintaining physical servers in on-premises data centers, companies can now access computing resources on-demand through the internet. This shift represents one of the most significant technological transformations of the 21st century.

In this lesson, you'll develop a solid understanding of cloud fundamentals, explore different service models, and learn how AWS structures its global infrastructure. Whether you're a developer, system administrator, or business professional, these concepts form the foundation for everything else you'll learn about AWS.

Core Concepts

What is Cloud Computing? โ˜๏ธ

Cloud computing is the on-demand delivery of IT resources over the internet with pay-as-you-go pricing. Instead of buying, owning, and maintaining physical data centers and servers, you can access technology services such as computing power, storage, and databases on an as-needed basis from a cloud provider like AWS.

Key characteristics of cloud computing:

  1. On-Demand Self-Service: Provision resources automatically without human interaction with the service provider
  2. Broad Network Access: Resources available over the network via standard mechanisms
  3. Resource Pooling: Provider's resources serve multiple customers using a multi-tenant model
  4. Rapid Elasticity: Capabilities can be elastically provisioned and released to scale with demand
  5. Measured Service: Resource usage is monitored, controlled, and reported (pay for what you use)

Traditional IT vs. Cloud Computing ๐Ÿข โ†’ โ˜๏ธ

Aspect Traditional IT Cloud Computing
Cost Structure High upfront capital expenditure (CapEx) Pay-as-you-go operational expenditure (OpEx)
Capacity Planning Must predict future needs months/years ahead Scale up or down based on actual demand
Speed Weeks/months to acquire new hardware Minutes to provision new resources
Maintenance Your team manages hardware, security, updates Provider handles infrastructure maintenance
Global Reach Expensive to establish presence in multiple regions Deploy globally in minutes
Risk Overprovisioning (wasted money) or underprovisioning (poor performance) Right-size resources dynamically

๐Ÿ’ก Tip: Think of cloud computing like electricity from a power company. You don't build your own power plantโ€”you plug into the grid and pay for what you use.

Cloud Service Models: IaaS, PaaS, SaaS ๐Ÿ“ฆ

Cloud services are typically categorized into three models, each providing different levels of control, flexibility, and management:

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚            CLOUD SERVICE MODELS                     โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

    YOUR RESPONSIBILITY  โ”‚  PROVIDER RESPONSIBILITY

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ ON-PREMISES (Traditional)                         โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ Applications          โ”‚ โ† You manage everything   โ”‚
โ”‚ Data                  โ”‚                           โ”‚
โ”‚ Runtime               โ”‚                           โ”‚
โ”‚ Middleware            โ”‚                           โ”‚
โ”‚ OS                    โ”‚                           โ”‚
โ”‚ Virtualization        โ”‚                           โ”‚
โ”‚ Servers               โ”‚                           โ”‚
โ”‚ Storage               โ”‚                           โ”‚
โ”‚ Networking            โ”‚                           โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ IaaS (Infrastructure as a Service)                โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ Applications          โ”‚                           โ”‚
โ”‚ Data                  โ”‚ โ† You manage              โ”‚
โ”‚ Runtime               โ”‚                           โ”‚
โ”‚ Middleware            โ”‚                           โ”‚
โ”‚ OS                    โ”‚                           โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ Virtualization        โ”‚                           โ”‚
โ”‚ Servers               โ”‚ โ† Provider manages        โ”‚
โ”‚ Storage               โ”‚                           โ”‚
โ”‚ Networking            โ”‚                           โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
   Examples: AWS EC2, Google Compute Engine

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ PaaS (Platform as a Service)                      โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ Applications          โ”‚                           โ”‚
โ”‚ Data                  โ”‚ โ† You manage              โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ Runtime               โ”‚                           โ”‚
โ”‚ Middleware            โ”‚                           โ”‚
โ”‚ OS                    โ”‚                           โ”‚
โ”‚ Virtualization        โ”‚ โ† Provider manages        โ”‚
โ”‚ Servers               โ”‚                           โ”‚
โ”‚ Storage               โ”‚                           โ”‚
โ”‚ Networking            โ”‚                           โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
   Examples: AWS Elastic Beanstalk, Google App Engine

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ SaaS (Software as a Service)                      โ”‚
โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
โ”‚ Applications          โ”‚                           โ”‚
โ”‚ Data                  โ”‚                           โ”‚
โ”‚ Runtime               โ”‚                           โ”‚
โ”‚ Middleware            โ”‚                           โ”‚
โ”‚ OS                    โ”‚ โ† Provider manages all    โ”‚
โ”‚ Virtualization        โ”‚                           โ”‚
โ”‚ Servers               โ”‚                           โ”‚
โ”‚ Storage               โ”‚                           โ”‚
โ”‚ Networking            โ”‚                           โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
   Examples: Gmail, Salesforce, Microsoft 365

IaaS (Infrastructure as a Service)

  • Provides virtualized computing resources over the internet
  • You manage: OS, middleware, runtime, applications, data
  • Provider manages: physical infrastructure, virtualization, networking
  • AWS Examples: EC2 (virtual servers), EBS (storage volumes), VPC (networking)
  • Use when: You need maximum control and want to migrate existing applications

PaaS (Platform as a Service)

  • Provides a platform for developing, testing, and deploying applications
  • You manage: applications and data
  • Provider manages: runtime environment, OS, infrastructure
  • AWS Examples: Elastic Beanstalk, Lambda, RDS (managed databases)
  • Use when: You want to focus on code, not infrastructure management

SaaS (Software as a Service)

  • Provides complete applications over the internet
  • You manage: only your data and access controls
  • Provider manages: everything else
  • AWS Examples: Amazon WorkDocs, Amazon Chime, AWS managed services
  • Use when: You need ready-to-use applications without customization

Cloud Deployment Models ๐ŸŒ

There are three primary ways to deploy cloud infrastructure:

1. Public Cloud โ˜๏ธ

  • Resources owned and operated by third-party cloud service provider
  • Delivered over the public internet
  • Multiple organizations share the same physical infrastructure (multi-tenancy)
  • Examples: AWS, Microsoft Azure, Google Cloud Platform
  • Advantages: No capital expense, high scalability, pay-per-use, no maintenance
  • Use cases: Web applications, development/testing, storage, big data analytics

2. Private Cloud ๐Ÿ”’

  • Infrastructure used exclusively by a single organization
  • Can be hosted on-premises or by a third-party provider
  • Greater control over security, compliance, and customization
  • Examples: AWS Outposts, VMware on-premises, OpenStack
  • Advantages: Complete control, enhanced security, compliance adherence
  • Use cases: Highly regulated industries (healthcare, finance, government)

3. Hybrid Cloud ๐Ÿ”„

  • Combination of public and private clouds
  • Data and applications can move between environments
  • Provides greater flexibility and optimization
  • Examples: AWS Direct Connect, AWS Storage Gateway
  • Advantages: Flexibility, cost optimization, gradual cloud migration
  • Use cases: Burst to cloud for peak demand, sensitive data on-premises, gradual migration
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚         DEPLOYMENT MODEL COMPARISON             โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

 PUBLIC CLOUD          HYBRID CLOUD         PRIVATE CLOUD
                            
    โ˜๏ธ โ˜๏ธ โ˜๏ธ              ๐Ÿ”’ โ†” โ˜๏ธ              ๐Ÿ”’ ๐Ÿ”’ ๐Ÿ”’
    Shared              Mixed                Dedicated
    Resources           Model                Resources
      โ”‚                   โ”‚                      โ”‚
      โ†“                   โ†“                      โ†“
  ๐Ÿ’ฐ Lowest          ๐Ÿ’ฐ Medium             ๐Ÿ’ฐ Highest
   Cost               Cost                  Cost
      โ”‚                   โ”‚                      โ”‚
      โ†“                   โ†“                      โ†“
  ๐Ÿ”“ Standard        ๐Ÿ” Enhanced           ๐Ÿ” Maximum
   Security           Security              Security

AWS Global Infrastructure ๐ŸŒ

AWS operates the world's most extensive and reliable cloud infrastructure. Understanding how AWS organizes its global presence is fundamental to designing resilient, low-latency applications.

Key Components:

1. Regions ๐Ÿ—บ๏ธ

A Region is a physical location in the world where AWS clusters data centers. Each Region is completely independent and isolated from other Regions.

  • Characteristics:

    • Each Region has multiple Availability Zones
    • Regions are geographically separated (e.g., US East, Europe, Asia Pacific)
    • Data doesn't automatically replicate across Regions (for data sovereignty)
    • You choose which Regions to deploy resources in
  • Current Scale: 30+ Regions worldwide (and growing)

  • Region Naming: Combines geographic location with number

    • us-east-1 (Northern Virginia)
    • eu-west-1 (Ireland)
    • ap-southeast-2 (Sydney)

๐Ÿ’ก How to choose a Region:

  1. Compliance: Data governance and legal requirements
  2. Latency: Proximity to your users
  3. Service Availability: Not all services available in all Regions
  4. Pricing: Costs vary by Region

2. Availability Zones (AZs) ๐Ÿข

An Availability Zone is one or more discrete data centers with redundant power, networking, and connectivity within a Region.

  • Characteristics:

    • Each Region has minimum 3 AZs (typically 3-6)
    • AZs are physically separated (different buildings, flood plains)
    • Connected via low-latency, high-throughput private fiber
    • Isolated from failures in other AZs
    • Identified by Region code + letter (e.g., us-east-1a, us-east-1b)
  • Purpose: Enable high availability and fault tolerance

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚              AWS REGION STRUCTURE                  โ”‚
โ”‚                                                    โ”‚
โ”‚  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚
โ”‚  โ”‚         Region: us-east-1                    โ”‚ โ”‚
โ”‚  โ”‚                                              โ”‚ โ”‚
โ”‚  โ”‚  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”  โ”‚ โ”‚
โ”‚  โ”‚  โ”‚   AZ-a   โ”‚  โ”‚   AZ-b   โ”‚  โ”‚   AZ-c   โ”‚  โ”‚ โ”‚
โ”‚  โ”‚  โ”‚  ๐Ÿข ๐Ÿข   โ”‚  โ”‚  ๐Ÿข ๐Ÿข   โ”‚  โ”‚  ๐Ÿข ๐Ÿข   โ”‚  โ”‚ โ”‚
โ”‚  โ”‚  โ”‚          โ”‚  โ”‚          โ”‚  โ”‚          โ”‚  โ”‚ โ”‚
โ”‚  โ”‚  โ”‚ Data     โ”‚  โ”‚ Data     โ”‚  โ”‚ Data     โ”‚  โ”‚ โ”‚
โ”‚  โ”‚  โ”‚ Centers  โ”‚  โ”‚ Centers  โ”‚  โ”‚ Centers  โ”‚  โ”‚ โ”‚
โ”‚  โ”‚  โ””โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”˜  โ””โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”˜  โ””โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”˜  โ”‚ โ”‚
โ”‚  โ”‚       โ”‚             โ”‚             โ”‚        โ”‚ โ”‚
โ”‚  โ”‚       โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜        โ”‚ โ”‚
โ”‚  โ”‚        Low-latency private network         โ”‚ โ”‚
โ”‚  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

  Best Practice: Deploy across multiple AZs
  for high availability and fault tolerance

3. Edge Locations ๐Ÿ“

Edge Locations are AWS sites deployed in major cities and highly populated areas to deliver content with low latency.

  • Purpose: Content delivery and caching (via Amazon CloudFront CDN)
  • Scale: 400+ Edge Locations globally
  • More numerous than Regions: Located closer to end users
  • Services: CloudFront, Route 53, AWS Global Accelerator, AWS Shield
       USER REQUEST FLOW WITH EDGE LOCATIONS

   ๐Ÿ‘ค User in Tokyo                ๐Ÿ‘ค User in London
      โ”‚                                โ”‚
      โ†“                                โ†“
   ๐Ÿ“ Edge Location              ๐Ÿ“ Edge Location
   (Tokyo)                       (London)
      โ”‚                                โ”‚
      โ”‚  โ† Cache Hit (Fast) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€  โ”‚
      โ”‚     OR                         โ”‚
      โ””โ”€โ”€โ†’ Cache Miss โ”€โ”€โ†’ ๐ŸŒ Origin โ†โ”€โ”˜
                          (us-east-1)

  First request: Fetches from origin (slower)
  Subsequent requests: Served from cache (faster)

4. Local Zones and Wavelength Zones ๐Ÿ“ก

Local Zones: Extensions of Regions placed in metropolitan areas

  • For ultra-low latency applications (gaming, real-time)
  • Example: us-east-1-atl-1a (Atlanta Local Zone)

Wavelength Zones: AWS infrastructure within telecom 5G networks

  • For mobile edge computing applications
  • Single-digit millisecond latency to mobile devices

The Shared Responsibility Model ๐Ÿค

AWS security operates under a shared responsibility model: AWS manages security OF the cloud, while customers manage security IN the cloud.

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚        SHARED RESPONSIBILITY MODEL              โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

         CUSTOMER RESPONSIBILITY
         "Security IN the Cloud"
    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
    โ”‚  Customer Data                  โ”‚
    โ”‚  Platform, Applications         โ”‚
    โ”‚  Identity & Access Management   โ”‚
    โ”‚  OS, Network, Firewall Config   โ”‚
    โ”‚  Client-side Encryption         โ”‚
    โ”‚  Server-side Encryption         โ”‚
    โ”‚  Network Traffic Protection     โ”‚
    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
               โ†• Interface โ†•
    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
    โ”‚  AWS RESPONSIBILITY             โ”‚
    โ”‚  "Security OF the Cloud"        โ”‚
    โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
    โ”‚  Software                       โ”‚
    โ”‚  Compute, Storage, Database,    โ”‚
    โ”‚  Networking                     โ”‚
    โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
    โ”‚  Hardware/AWS Global Infra      โ”‚
    โ”‚  Regions, AZs, Edge Locations   โ”‚
    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

AWS Responsibilities:

  • Physical security of data centers
  • Hardware and network infrastructure
  • Virtualization layer security
  • Managed services (RDS, Lambda, S3)

Customer Responsibilities:

  • Data encryption and protection
  • IAM user management and permissions
  • OS patches and updates (for EC2)
  • Network configuration (security groups, NACLs)
  • Application security
  • Compliance validation

๐Ÿ’ก Memory Device - "AWS Builds the House, You Lock the Doors"

  • AWS: Builds and maintains the secure building (infrastructure)
  • You: Decide who gets keys, what's stored inside, and how it's protected (data and access)

โš ๏ธ The responsibility shifts based on service type:

  • IaaS (EC2): You have more responsibility (OS, patches, security)
  • PaaS (Elastic Beanstalk): Shared responsibility (you manage code, AWS manages platform)
  • SaaS (managed services): AWS handles most security aspects

Real-World Examples

Example 1: E-Commerce Startup Goes Global ๐Ÿ›’

Scenario: A small online store starts in California and wants to expand to Europe and Asia.

Traditional Approach:

  • Purchase servers for each location: $50,000+ per data center
  • Hire local IT staff in each region
  • 6-12 months to establish infrastructure
  • Fixed capacity regardless of actual traffic

AWS Cloud Approach:

Week 1: Deploy to us-west-2 (Oregon)
- Launch EC2 instances, RDS database
- Use Auto Scaling for traffic spikes
- Total setup time: 2 hours
- Cost: ~$200/month starting scale

Month 3: Expand to Europe
- Deploy identical stack to eu-west-1 (Ireland)
- Use Route 53 for geographic routing
- Setup time: 30 minutes
- Additional cost: ~$200/month

Month 6: Add Asia Pacific
- Deploy to ap-southeast-1 (Singapore)
- Enable CloudFront CDN for all regions
- User latency reduced by 70%
- Total monthly cost: ~$800 (scales with actual usage)

Benefits Realized:

  • Capital savings: $150,000+ in infrastructure costs avoided
  • Speed: Global in 6 months vs. 2+ years
  • Elasticity: Handle Black Friday traffic spikes automatically
  • Cost efficiency: Pay only for resources used, not capacity "just in case"

Example 2: High Availability Architecture ๐Ÿ—๏ธ

Scenario: A financial services company needs 99.99% uptime for their trading platform.

AWS Multi-AZ Deployment:

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚     Region: us-east-1 (N. Virginia)             โ”‚
โ”‚                                                 โ”‚
โ”‚  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”      โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”  โ”‚
โ”‚  โ”‚  AZ us-east-1a  โ”‚      โ”‚  AZ us-east-1b  โ”‚  โ”‚
โ”‚  โ”‚                 โ”‚      โ”‚                 โ”‚  โ”‚
โ”‚  โ”‚  ๐Ÿ–ฅ๏ธ EC2 Web     โ”‚      โ”‚  ๐Ÿ–ฅ๏ธ EC2 Web     โ”‚  โ”‚
โ”‚  โ”‚  ๐Ÿ–ฅ๏ธ EC2 App     โ”‚      โ”‚  ๐Ÿ–ฅ๏ธ EC2 App     โ”‚  โ”‚
โ”‚  โ”‚                 โ”‚      โ”‚                 โ”‚  โ”‚
โ”‚  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜      โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ”‚
โ”‚           โ”‚                        โ”‚           โ”‚
โ”‚           โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜           โ”‚
โ”‚                       โ”‚                        โ”‚
โ”‚              โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”               โ”‚
โ”‚              โ”‚ โš–๏ธ Load Balancer โ”‚               โ”‚
โ”‚              โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜               โ”‚
โ”‚                       โ”‚                        โ”‚
โ”‚  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”   โ”‚
โ”‚  โ”‚  ๐Ÿ—„๏ธ RDS Primary (1a) โŸท Standby (1b)    โ”‚   โ”‚
โ”‚  โ”‚  (Automatic failover)                   โ”‚   โ”‚
โ”‚  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜   โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

How it works:

  1. Elastic Load Balancer distributes traffic across both AZs
  2. EC2 instances in each AZ handle requests independently
  3. RDS Multi-AZ automatically fails over if primary database fails
  4. If entire AZ goes down, traffic routes only to healthy AZ

Achieved SLA:

  • Single AZ: 99.5% uptime (43.8 hours downtime/year)
  • Multi-AZ: 99.99% uptime (52.6 minutes downtime/year)
  • Multi-Region: 99.999% uptime (5.26 minutes downtime/year)

Example 3: Cost Optimization Through Right-Sizing ๐Ÿ’ฐ

Scenario: A media company runs video processing workloads with unpredictable usage patterns.

Problem with Traditional Infrastructure:

  • Must provision for peak capacity (100 servers)
  • Average utilization: 30%
  • Wasted capacity cost: $140,000/year

AWS Cloud Solution:

Base Capacity (always-on):
- 10 EC2 Reserved Instances
- Cost: $15,000/year (75% discount vs. on-demand)
- Handles typical workload

Variable Capacity (auto-scaling):
- 0-90 EC2 Spot Instances
- Cost: 70% cheaper than on-demand
- Scales up during processing peaks
- Scales to zero during off-hours

Storage:
- Active projects: S3 Standard
- Completed projects: S3 Glacier
- Lifecycle policies automate transitions

Results:

  • Total AWS cost: $45,000/year
  • Savings: $105,000/year (70% reduction)
  • Better performance during peaks (can scale beyond 100 instances)
  • Zero capacity waste

Example 4: Edge Computing for Gaming ๐ŸŽฎ

Scenario: A mobile game company needs sub-50ms latency worldwide for competitive gameplay.

Solution Architecture:

Global Distribution:
- Game assets: CloudFront CDN (400+ edge locations)
- Player authentication: Route 53 latency-based routing
- Game state sync: DynamoDB Global Tables
- Real-time matches: EC2 in multiple Regions

Player Experience:
- Player in Sรฃo Paulo โ†’ Routes to sa-east-1
- Player in Mumbai โ†’ Routes to ap-south-1
- Player in Frankfurt โ†’ Routes to eu-central-1
- All connected via AWS backbone network

Performance Metrics:

  • Before AWS: 200-500ms latency, single data center
  • After AWS: 20-45ms latency globally
  • Player retention: Increased 35%
  • Concurrent users: 10x growth enabled

๐Ÿ”ง Try This: Check your own latency to AWS Regions using CloudPing.info to see which Region provides the best performance from your location.

Common Mistakes

โŒ Mistake 1: Deploying Everything in a Single AZ

Why it's wrong: If that AZ experiences an outage, your entire application goes down.

Correct approach:

  • Always deploy critical workloads across at least 2 AZs
  • Use load balancers to distribute traffic
  • Enable Multi-AZ for databases
โŒ Single AZ (risky):
EC2 (us-east-1a) โ†’ RDS (us-east-1a)
โ†’ AZ outage = 100% downtime

โœ… Multi-AZ (resilient):
ELB โ†’ EC2 (1a, 1b) โ†’ RDS Primary (1a) + Standby (1b)
โ†’ AZ outage = automatic failover, <60 sec disruption

โŒ Mistake 2: Confusing Regions with Availability Zones

Wrong thinking: "I'll deploy to us-east-1 and us-east-2 for high availability."

Why it's wrong: These are different Regions (different geographic areas), not AZs. You're adding complexity and latency without understanding the difference.

Correct approach:

  • High availability: Use multiple AZs within a single Region
  • Disaster recovery: Use multiple Regions
  • Low latency globally: Use multiple Regions close to users

โŒ Mistake 3: Assuming All Services Are Available in All Regions

Reality check: Newer AWS services launch in specific Regions first, then expand gradually.

Impact: You design an architecture using a service, then find it's not available in your target Region.

Best practice:

  • Check the AWS Regional Services List before designing
  • Have fallback options for critical services
  • Consider Region availability when choosing deployment locations

โŒ Mistake 4: Treating Cloud Like a Data Center

Wrong approach: "Lift and shift"โ€”moving on-premises architecture to cloud without redesigning.

Why it's suboptimal:

  • Misses cloud-native benefits (auto-scaling, managed services)
  • Doesn't leverage elasticity
  • Often costs more than optimized cloud architecture

Better approach:

  • Embrace managed services (RDS instead of self-managed databases)
  • Design for failure (assume components will fail)
  • Use auto-scaling instead of fixed capacity
  • Leverage serverless where appropriate (Lambda, DynamoDB)

โŒ Mistake 5: Misunderstanding the Shared Responsibility Model

Dangerous assumption: "AWS handles all security, so I don't need to worry about it."

Reality:

  • AWS secures the infrastructure
  • You secure your data, applications, and access controls
  • Most breaches result from customer configuration errors, not AWS flaws

Critical responsibilities you must handle:

  • Encrypting sensitive data
  • Managing IAM permissions properly
  • Patching OS and applications (for EC2)
  • Configuring security groups correctly
  • Enabling MFA for privileged accounts

โŒ Mistake 6: Ignoring Data Transfer Costs

Surprise: "My AWS bill is 3x what I expected!"

Common cause: Not understanding data transfer pricing:

  • Data IN to AWS: Free
  • Data OUT to internet: Charged per GB
  • Data between Regions: Charged
  • Data within same AZ: Often free
  • Data between AZs: Small charge

Cost optimization:

  • Use CloudFront CDN to reduce origin data transfer
  • Keep frequently accessed data in same Region as compute
  • Use VPC endpoints to avoid internet gateway charges
  • Compress data before transfer

Key Takeaways

Essential Concepts to Remember ๐ŸŽฏ

  1. Cloud computing provides on-demand access to IT resources with pay-as-you-go pricing, eliminating upfront capital expenses

  2. Service Models define responsibility levels:

    • IaaS: Maximum control (you manage OS, apps)
    • PaaS: Focus on code (AWS manages platform)
    • SaaS: Ready-to-use applications
  3. AWS Regions are geographically separated locations, each containing multiple isolated Availability Zones for fault tolerance

  4. Multi-AZ deployment is essential for high availability; Multi-Region for disaster recovery and global reach

  5. Shared Responsibility Model: AWS secures infrastructure ("OF the cloud"), you secure data and access ("IN the cloud")

  6. Edge Locations cache content closer to users via CloudFront CDN for reduced latency

  7. Always design for failure in the cloudโ€”assume components will fail and architect for resilience

  8. Cloud enables elasticity: scale resources up and down based on demand, paying only for what you use

๐Ÿง  Memory Device - The "CLOUD" Acronym:

  • Capacity on-demand
  • Low upfront costs
  • Operational expenditure model
  • Unmatched scalability
  • Distributed globally

๐Ÿ“‹ Quick Reference Card: AWS Infrastructure

Component Definition Count Use For
Region Geographic area with multiple AZs 30+ Compliance, latency, service availability
Availability Zone Isolated data center(s) within Region 3-6 per Region High availability, fault tolerance
Edge Location CDN endpoint for caching 400+ Content delivery, low latency
Local Zone Extension of Region in metro areas Growing Ultra-low latency applications

๐Ÿ”‘ Service Model Comparison

Model You Manage AWS Manages Example
IaaS OS, apps, data, runtime Hardware, virtualization, networking EC2, EBS, VPC
PaaS Applications, data Everything below application layer Elastic Beanstalk, RDS
SaaS Data, user access Entire application stack WorkDocs, Chime

๐Ÿค” Did You Know?

  • AWS operates more data centers than the next 5 cloud providers combined, giving it unmatched global reach
  • Netflix runs entirely on AWS, streaming to 200+ million subscribers without owning a single server
  • The term "cloud computing" originated in 1996, but AWS pioneered commercial cloud services in 2006 with EC2 and S3
  • AWS Regions are designed to withstand natural disastersโ€”they're never placed on fault lines or in flood-prone areas
  • Each Availability Zone has independent power, fed by different electrical grids to ensure isolation

๐Ÿ“š Further Study

You now have a solid foundation in cloud fundamentals and AWS infrastructure! Next, you'll explore specific AWS core services and learn how to architect solutions using these building blocks. Keep practicing these conceptsโ€”they form the bedrock of everything you'll build on AWS.