Terraform on AWS
State management, drift detection, modules, and real-world Terraform patterns
Terraform on AWS: Infrastructure as Code Made Simple
Master infrastructure automation on AWS with free flashcards and hands-on Terraform practice. This lesson covers Terraform providers, resource definitions, state management, and AWS-specific best practicesโessential skills for modern cloud engineers building scalable, repeatable infrastructure.
๐ป Welcome to Terraform on AWS
Terraform has revolutionized how we provision and manage cloud infrastructure. Instead of clicking through AWS console screens or writing complex scripts, you declare your desired infrastructure state in configuration files, and Terraform makes it happen. Think of it as "infrastructure blueprints" that are version-controlled, testable, and repeatable.
Why Terraform + AWS?
- ๐ Declarative syntax: Describe what you want, not how to create it
- ๐ Version control: Track infrastructure changes like code
- ๐ Idempotent: Run the same config 100 times, get the same result
- ๐ Multi-region/multi-account: Manage complex AWS architectures
- ๐ค Team collaboration: Share modules, review changes via pull requests
๐ก Did you know? Terraform was created by HashiCorp in 2014 and now manages infrastructure across 300+ cloud providers, but AWS remains the most popular integration.
๐๏ธ Core Concepts
1. Providers: Connecting to AWS
The provider block tells Terraform how to authenticate and interact with AWS. It's your gateway to the AWS API.
terraform {
required_providers {
aws = {
source = "hashicorp/aws"
version = "~> 5.0"
}
}
}
provider "aws" {
region = "us-east-1"
profile = "default" # Uses AWS CLI credentials
}
Key elements:
- source: Where to download the provider (HashiCorp registry)
- version: Constraint to prevent breaking changes (use
~>for minor updates) - region: Which AWS region to deploy resources
- profile: AWS credential profile from
~/.aws/credentials
โ ๏ธ Authentication methods (in order of preference):
- IAM roles (for EC2/ECS/Lambda)
- AWS profiles (for local development)
- Environment variables (
AWS_ACCESS_KEY_ID,AWS_SECRET_ACCESS_KEY) - โ Never hardcode credentials in Terraform files!
2. Resources: Building Blocks of Infrastructure
A resource is any AWS component you want to create: EC2 instances, S3 buckets, VPCs, security groups, etc.
Syntax pattern:
resource "<provider>_<type>" "<local_name>" {
argument1 = "value1"
argument2 = "value2"
}
Example: Creating an S3 bucket
resource "aws_s3_bucket" "data_lake" {
bucket = "my-company-data-lake-2024"
tags = {
Environment = "Production"
ManagedBy = "Terraform"
}
}
resource "aws_s3_bucket_versioning" "data_lake_versioning" {
bucket = aws_s3_bucket.data_lake.id
versioning_configuration {
status = "Enabled"
}
}
๐ Notice:
- Resource type:
aws_s3_bucket(format:<provider>_<service>) - Local name:
data_lake(used to reference in other resources) - Reference syntax:
aws_s3_bucket.data_lake.id(access attributes) - Implicit dependency: Versioning resource depends on bucket
๐ก Naming convention: Use descriptive local names that reflect purpose, not AWS names. Think web_server_sg not sg_12345.
3. State: Terraform's Memory
Terraform tracks what it created in a state file (terraform.tfstate). This is how it knows what exists, what changed, and what to update.
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ TERRAFORM STATE WORKFLOW โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค โ โ โ ๐ .tf files โ ๐งฎ Plan โ โ๏ธ AWS โ โ (desired) (diff) (actual) โ โ โ โ โ ๐ State File โ โ (tracks what exists) โ โ โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
State file contains:
- Resource IDs (e.g.,
i-0abc123,sg-xyz789) - Current attribute values
- Dependencies between resources
- Metadata (provider versions, timestamps)
โ ๏ธ CRITICAL STATE MANAGEMENT RULES:
| โ Never Do This | โ Always Do This |
|---|---|
| Edit state file manually | Use terraform state commands |
| Commit state to Git | Use remote backend (S3 + DynamoDB) |
| Share state file via Dropbox | Enable state locking |
| Delete state file | Keep backups, use versioning |
Remote backend configuration (production standard):
terraform {
backend "s3" {
bucket = "my-terraform-state-bucket"
key = "prod/vpc/terraform.tfstate"
region = "us-east-1"
dynamodb_table = "terraform-locks"
encrypt = true
}
}
๐ง Mnemonic: STATE = Store, Track, Avoid conflicts, Track changes, Enable collaboration
4. Variables and Outputs: Reusability
Variables make configurations flexible and reusable across environments.
variables.tf:
variable "environment" {
description = "Deployment environment"
type = string
default = "dev"
validation {
condition = contains(["dev", "staging", "prod"], var.environment)
error_message = "Environment must be dev, staging, or prod."
}
}
variable "instance_count" {
description = "Number of EC2 instances"
type = number
default = 1
}
variable "allowed_cidr_blocks" {
description = "CIDR blocks for security group"
type = list(string)
default = ["10.0.0.0/16"]
}
Using variables:
resource "aws_instance" "app_server" {
count = var.instance_count
instance_type = var.environment == "prod" ? "t3.large" : "t3.micro"
tags = {
Name = "app-server-${var.environment}-${count.index}"
Environment = var.environment
}
}
Outputs expose values for other modules or external use.
outputs.tf:
output "instance_public_ips" {
description = "Public IP addresses of app servers"
value = aws_instance.app_server[*].public_ip
}
output "load_balancer_dns" {
description = "DNS name of load balancer"
value = aws_lb.main.dns_name
}
๐ก Variable precedence (highest to lowest):
- Command line:
-var="instance_count=3" .tfvarsfile:terraform apply -var-file="prod.tfvars"- Environment variables:
TF_VAR_instance_count=3 - Default values in variable definition
5. Data Sources: Query Existing Resources
Data sources let you fetch information about resources Terraform didn't create.
## Get the latest Amazon Linux 2 AMI
data "aws_ami" "amazon_linux_2" {
most_recent = true
owners = ["amazon"]
filter {
name = "name"
values = ["amzn2-ami-hvm-*-x86_64-gp2"]
}
}
## Get default VPC
data "aws_vpc" "default" {
default = true
}
## Use data source in resource
resource "aws_instance" "web" {
ami = data.aws_ami.amazon_linux_2.id
instance_type = "t3.micro"
subnet_id = data.aws_vpc.default.id
}
When to use data sources:
- โ Reference existing VPCs, subnets, security groups
- โ Look up latest AMI IDs dynamically
- โ Get account ID, region, availability zones
- โ Query resources managed by other teams
๐ฏ Example 1: Complete VPC Setup
Let's build a production-ready VPC with public/private subnets, NAT gateway, and internet gateway.
main.tf:
## VPC
resource "aws_vpc" "main" {
cidr_block = "10.0.0.0/16"
enable_dns_hostnames = true
enable_dns_support = true
tags = {
Name = "main-vpc"
}
}
## Internet Gateway
resource "aws_internet_gateway" "main" {
vpc_id = aws_vpc.main.id
tags = {
Name = "main-igw"
}
}
## Public Subnet
resource "aws_subnet" "public" {
vpc_id = aws_vpc.main.id
cidr_block = "10.0.1.0/24"
availability_zone = "us-east-1a"
map_public_ip_on_launch = true
tags = {
Name = "public-subnet-1a"
Type = "Public"
}
}
## Private Subnet
resource "aws_subnet" "private" {
vpc_id = aws_vpc.main.id
cidr_block = "10.0.2.0/24"
availability_zone = "us-east-1a"
tags = {
Name = "private-subnet-1a"
Type = "Private"
}
}
## Elastic IP for NAT Gateway
resource "aws_eip" "nat" {
domain = "vpc"
tags = {
Name = "nat-gateway-eip"
}
}
## NAT Gateway
resource "aws_nat_gateway" "main" {
allocation_id = aws_eip.nat.id
subnet_id = aws_subnet.public.id
tags = {
Name = "main-nat-gateway"
}
depends_on = [aws_internet_gateway.main]
}
## Route Table for Public Subnet
resource "aws_route_table" "public" {
vpc_id = aws_vpc.main.id
route {
cidr_block = "0.0.0.0/0"
gateway_id = aws_internet_gateway.main.id
}
tags = {
Name = "public-route-table"
}
}
## Route Table for Private Subnet
resource "aws_route_table" "private" {
vpc_id = aws_vpc.main.id
route {
cidr_block = "0.0.0.0/0"
nat_gateway_id = aws_nat_gateway.main.id
}
tags = {
Name = "private-route-table"
}
}
## Associate Route Tables
resource "aws_route_table_association" "public" {
subnet_id = aws_subnet.public.id
route_table_id = aws_route_table.public.id
}
resource "aws_route_table_association" "private" {
subnet_id = aws_subnet.private.id
route_table_id = aws_route_table.private.id
}
Network flow diagram:
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ VPC 10.0.0.0/16 โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ โ
โ โโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโ โ
โ โ Public Subnet โ โ Private Subnet โ โ
โ โ 10.0.1.0/24 โ โ 10.0.2.0/24 โ โ
โ โ โ โ โ โ
โ โ ๐ EC2 (Web) โ โ ๐พ RDS โ โ
โ โ ๐ NAT Gateway โ โ ๐ App Server โ โ
โ โโโโโโโโโโฌโโโโโโโโโโ โโโโโโโโโโฌโโโโโโโโโโ โ
โ โ โ โ
โ โ โ โ
โ โโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโ โ
โ โ IGW Route โ โ NAT Route โ โ
โ โ 0.0.0.0/0 โ โ 0.0.0.0/0 โ โ
โ โโโโโโโโฌโโโโโโโ โโโโโโโโฌโโโโโโโ โ
โ โ โ โ
โโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโ
โ โ
โ โ
๐ Internet โโโโโโโโโโโโโ NAT Gateway
Explanation:
- Public subnet: Resources get public IPs, route to Internet Gateway
- Private subnet: No public IPs, route through NAT Gateway for outbound
- NAT Gateway: Allows private resources to reach internet (patches, updates)
- Dependencies: NAT needs EIP, route tables need gateways created first
๐ฏ Example 2: EC2 with Security Groups
Let's deploy a web server with proper security configuration.
## Security Group for Web Server
resource "aws_security_group" "web_server" {
name = "web-server-sg"
description = "Allow HTTP/HTTPS inbound, all outbound"
vpc_id = aws_vpc.main.id
ingress {
description = "HTTP from anywhere"
from_port = 80
to_port = 80
protocol = "tcp"
cidr_blocks = ["0.0.0.0/0"]
}
ingress {
description = "HTTPS from anywhere"
from_port = 443
to_port = 443
protocol = "tcp"
cidr_blocks = ["0.0.0.0/0"]
}
ingress {
description = "SSH from office"
from_port = 22
to_port = 22
protocol = "tcp"
cidr_blocks = ["203.0.113.0/24"] # Your office IP range
}
egress {
description = "Allow all outbound"
from_port = 0
to_port = 0
protocol = "-1"
cidr_blocks = ["0.0.0.0/0"]
}
tags = {
Name = "web-server-sg"
}
}
## EC2 Instance
resource "aws_instance" "web_server" {
ami = data.aws_ami.amazon_linux_2.id
instance_type = "t3.micro"
subnet_id = aws_subnet.public.id
vpc_security_group_ids = [aws_security_group.web_server.id]
key_name = "my-ssh-key"
user_data = <<-EOF
#!/bin/bash
yum update -y
yum install -y httpd
systemctl start httpd
systemctl enable httpd
echo "<h1>Hello from Terraform!</h1>" > /var/www/html/index.html
EOF
root_block_device {
volume_size = 20
volume_type = "gp3"
encrypted = true
}
tags = {
Name = "web-server"
ManagedBy = "Terraform"
Environment = "Production"
}
}
## Elastic IP (optional - for static IP)
resource "aws_eip" "web_server" {
instance = aws_instance.web_server.id
domain = "vpc"
tags = {
Name = "web-server-eip"
}
}
## Output the public URL
output "web_server_url" {
description = "URL to access web server"
value = "http://${aws_eip.web_server.public_ip}"
}
Key features:
- Security groups: Firewall rules at instance level
- User data: Bootstrap script runs on first boot
- Encrypted EBS: Root volume encryption enabled
- Elastic IP: Persistent public IP (survives instance stop/start)
๐ก Security best practice: Never open SSH (port 22) to 0.0.0.0/0. Use VPN, bastion hosts, or AWS Systems Manager Session Manager instead.
๐ฏ Example 3: S3 + CloudFront Static Website
Host a static website with S3 backend and CloudFront CDN.
## S3 Bucket for Website Content
resource "aws_s3_bucket" "website" {
bucket = "my-awesome-website-2024"
tags = {
Name = "Website Bucket"
}
}
## Bucket Website Configuration
resource "aws_s3_bucket_website_configuration" "website" {
bucket = aws_s3_bucket.website.id
index_document {
suffix = "index.html"
}
error_document {
key = "error.html"
}
}
## Block Public Access (CloudFront will access via OAC)
resource "aws_s3_bucket_public_access_block" "website" {
bucket = aws_s3_bucket.website.id
block_public_acls = true
block_public_policy = true
ignore_public_acls = true
restrict_public_buckets = true
}
## CloudFront Origin Access Control
resource "aws_cloudfront_origin_access_control" "website" {
name = "s3-website-oac"
origin_access_control_origin_type = "s3"
signing_behavior = "always"
signing_protocol = "sigv4"
}
## CloudFront Distribution
resource "aws_cloudfront_distribution" "website" {
enabled = true
default_root_object = "index.html"
price_class = "PriceClass_100" # US, Canada, Europe
origin {
domain_name = aws_s3_bucket.website.bucket_regional_domain_name
origin_id = "S3-Website"
origin_access_control_id = aws_cloudfront_origin_access_control.website.id
}
default_cache_behavior {
target_origin_id = "S3-Website"
viewer_protocol_policy = "redirect-to-https"
allowed_methods = ["GET", "HEAD", "OPTIONS"]
cached_methods = ["GET", "HEAD"]
compress = true
forwarded_values {
query_string = false
cookies {
forward = "none"
}
}
min_ttl = 0
default_ttl = 3600
max_ttl = 86400
}
restrictions {
geo_restriction {
restriction_type = "none"
}
}
viewer_certificate {
cloudfront_default_certificate = true
}
tags = {
Name = "Website CDN"
}
}
## S3 Bucket Policy (allow CloudFront access)
resource "aws_s3_bucket_policy" "website" {
bucket = aws_s3_bucket.website.id
policy = jsonencode({
Version = "2012-10-17"
Statement = [
{
Sid = "AllowCloudFrontAccess"
Effect = "Allow"
Principal = {
Service = "cloudfront.amazonaws.com"
}
Action = "s3:GetObject"
Resource = "${aws_s3_bucket.website.arn}/*"
Condition = {
StringEquals = {
"AWS:SourceArn" = aws_cloudfront_distribution.website.arn
}
}
}
]
})
}
output "cloudfront_url" {
description = "CloudFront distribution URL"
value = "https://${aws_cloudfront_distribution.website.domain_name}"
}
Architecture flow:
โโโโโโโโโโโโ HTTPS โโโโโโโโโโโโโโโ S3 API โโโโโโโโโโโโ
โ User โ โโโโโโโโโโโโโโโ โ CloudFront โ โโโโโโโโโโโโโโโ โ S3 Bucketโ
โ Browser โ โ CDN โ (private) โ (private)โ
โโโโโโโโโโโโ โ (150+ PoPs) โ โโโโโโโโโโโโ
โโโโโโโโโโโโโโโ
โ
โ
๐ Origin Access
Control (OAC)
Benefits:
- โก Low latency: Content cached at edge locations worldwide
- ๐ Secure: S3 bucket private, CloudFront serves via HTTPS
- ๐ฐ Cost-effective: S3 storage + CloudFront cheaper than EC2
- ๐ Scalable: Handles traffic spikes automatically
๐ฏ Example 4: RDS Database with Multi-AZ
Deploy a production PostgreSQL database with high availability.
## DB Subnet Group (spans multiple AZs)
resource "aws_db_subnet_group" "main" {
name = "main-db-subnet-group"
subnet_ids = [aws_subnet.private_1a.id, aws_subnet.private_1b.id]
tags = {
Name = "Main DB Subnet Group"
}
}
## Security Group for RDS
resource "aws_security_group" "rds" {
name = "rds-sg"
description = "Allow PostgreSQL from app servers"
vpc_id = aws_vpc.main.id
ingress {
description = "PostgreSQL from app tier"
from_port = 5432
to_port = 5432
protocol = "tcp"
security_groups = [aws_security_group.app_server.id]
}
egress {
from_port = 0
to_port = 0
protocol = "-1"
cidr_blocks = ["0.0.0.0/0"]
}
tags = {
Name = "rds-sg"
}
}
## RDS PostgreSQL Instance
resource "aws_db_instance" "main" {
identifier = "main-postgres-db"
engine = "postgres"
engine_version = "15.3"
instance_class = "db.t3.medium"
allocated_storage = 100
storage_type = "gp3"
storage_encrypted = true
db_name = "appdb"
username = "dbadmin"
password = var.db_password # โ ๏ธ Use Secrets Manager in production!
multi_az = true
db_subnet_group_name = aws_db_subnet_group.main.name
vpc_security_group_ids = [aws_security_group.rds.id]
backup_retention_period = 7
backup_window = "03:00-04:00"
maintenance_window = "sun:04:00-sun:05:00"
enabled_cloudwatch_logs_exports = ["postgresql", "upgrade"]
skip_final_snapshot = false
final_snapshot_identifier = "main-postgres-final-snapshot"
tags = {
Name = "Main PostgreSQL DB"
Environment = "Production"
}
}
## Outputs
output "rds_endpoint" {
description = "RDS endpoint for application connection"
value = aws_db_instance.main.endpoint
sensitive = true
}
output "rds_arn" {
description = "RDS ARN"
value = aws_db_instance.main.arn
}
Production considerations:
- โ Multi-AZ: Automatic failover to standby in another AZ
- โ Encrypted storage: Data-at-rest encryption
- โ Backup retention: 7 days (adjust based on compliance needs)
- โ CloudWatch logs: Monitor database performance
- โ ๏ธ Password management: Use AWS Secrets Manager, not variables!
๐ง Try this: Connect password to Secrets Manager:
data "aws_secretsmanager_secret_version" "db_password" {
secret_id = "prod/db/password"
}
resource "aws_db_instance" "main" {
password = data.aws_secretsmanager_secret_version.db_password.secret_string
# ... rest of config
}
โ ๏ธ Common Mistakes
1. Not Using Remote State
โ Wrong:
## No backend config - state stays local
terraform {
required_version = ">= 1.0"
}
โ Right:
terraform {
backend "s3" {
bucket = "company-terraform-state"
key = "prod/infrastructure.tfstate"
region = "us-east-1"
dynamodb_table = "terraform-locks"
encrypt = true
}
}
Why it matters: Local state files get lost, corrupted, or cause conflicts when multiple people work on the same infrastructure.
2. Hardcoding Sensitive Values
โ Wrong:
resource "aws_db_instance" "main" {
username = "admin"
password = "SuperSecret123!" # โ ๏ธ NEVER DO THIS!
}
โ Right:
variable "db_password" {
description = "Database password"
type = string
sensitive = true
}
resource "aws_db_instance" "main" {
username = "admin"
password = var.db_password
}
Pass via environment variable: export TF_VAR_db_password="..." or use Secrets Manager.
3. Ignoring Resource Dependencies
โ Wrong:
resource "aws_eip" "nat" {
domain = "vpc"
}
resource "aws_nat_gateway" "main" {
allocation_id = aws_eip.nat.id
subnet_id = aws_subnet.public.id
# Missing: depends_on for IGW!
}
โ Right:
resource "aws_nat_gateway" "main" {
allocation_id = aws_eip.nat.id
subnet_id = aws_subnet.public.id
depends_on = [aws_internet_gateway.main]
}
NAT Gateway needs IGW to exist first, but Terraform can't infer this automatically.
4. Not Using Modules for Reusability
โ Wrong: Copy-paste same VPC config across 10 projects
โ Right: Create reusable module
modules/vpc/main.tf:
variable "environment" {
type = string
}
variable "cidr_block" {
type = string
}
resource "aws_vpc" "main" {
cidr_block = var.cidr_block
tags = {
Environment = var.environment
}
}
output "vpc_id" {
value = aws_vpc.main.id
}
Use module:
module "vpc" {
source = "./modules/vpc"
environment = "production"
cidr_block = "10.0.0.0/16"
}
resource "aws_subnet" "public" {
vpc_id = module.vpc.vpc_id
# ...
}
5. Not Planning Before Applying
โ Wrong:
terraform apply # Directly applies without review!
โ Right:
terraform plan -out=tfplan # Review changes
## ... review output carefully ...
terraform apply tfplan # Apply approved plan
๐ก In CI/CD: Always require terraform plan approval before apply.
6. Using Latest Provider Versions in Production
โ Wrong:
provider "aws" {
# No version constraint - gets latest!
}
โ Right:
terraform {
required_providers {
aws = {
source = "hashicorp/aws"
version = "~> 5.0" # Allow 5.x updates, not 6.0
}
}
}
Version constraint operators:
~> 5.0: Allows 5.1, 5.2, but not 6.0 (recommended)>= 5.0: Any version 5.0 or higher (risky)= 5.0.0: Exact version only (too strict)
๐ Key Takeaways
๐ Quick Reference Card
| Concept | Key Points |
|---|---|
| Provider | Connects to AWS, specifies region and authentication |
| Resource | Infrastructure component you create (EC2, S3, VPC, etc.) |
| Data Source | Query existing resources you didn't create |
| State | Tracks what Terraform manages; use remote backend + locking |
| Variables | Make configs reusable; pass via CLI, files, or env vars |
| Outputs | Expose values for other modules or external use |
| Modules | Reusable Terraform code packages |
Essential Commands:
| Command | Purpose |
|---|---|
terraform init |
Initialize working directory, download providers |
terraform plan |
Preview changes before applying |
terraform apply |
Create/update infrastructure |
terraform destroy |
Delete all managed infrastructure |
terraform fmt |
Format code to standard style |
terraform validate |
Check syntax and configuration |
terraform state list |
List resources in state |
AWS Resource Naming Patterns:
| Service | Terraform Resource | Example |
|---|---|---|
| EC2 | aws_instance |
Virtual machines |
| S3 | aws_s3_bucket |
Object storage |
| VPC | aws_vpc |
Virtual network |
| RDS | aws_db_instance |
Managed database |
| Security Group | aws_security_group |
Firewall rules |
| IAM Role | aws_iam_role |
Identity permissions |
| CloudFront | aws_cloudfront_distribution |
CDN |
| ALB | aws_lb |
Load balancer |
๐ง Memory Device: TERRAFORM Workflow
Type your configuration (.tf files)
Execute init to download providers
Review with plan before changes
Run apply to create resources
Audit state to track what exists
Format code with fmt
Outputs show important values
Remote backend stores state
Modules enable reuse
๐ค Did You Know?
- Terraform Cloud: HashiCorp's SaaS offering provides remote state, collaboration features, and policy-as-code for free (up to 5 users)
- Import existing resources: Use
terraform importto bring manually-created AWS resources under Terraform management - Cost estimation:
terraform planintegrations with Infracost can show projected AWS costs before deployment - Graph visualization: Run
terraform graph | dot -Tpng > graph.pngto see resource dependency diagrams - Terraform started as a side project by Mitchell Hashimoto during a flight in 2014. Now it's used by 70% of Fortune 500 companies!
๐ Further Study
Terraform AWS Provider Documentation - https://registry.terraform.io/providers/hashicorp/aws/latest/docs
Complete reference for all AWS resources and data sourcesHashiCorp Learn: Terraform on AWS - https://developer.hashicorp.com/terraform/tutorials/aws-get-started
Official interactive tutorials from beginner to advancedAWS Well-Architected Framework - https://aws.amazon.com/architecture/well-architected/
Best practices for building secure, reliable infrastructure on AWS
๐ Congratulations! You now understand Terraform's core concepts on AWS. Start small with a single EC2 instance or S3 bucket, then gradually build complex architectures. Remember: infrastructure as code isn't just about automationโit's about creating reproducible, auditable, and collaborative infrastructure management.
Next steps:
- ๐ง Build a personal project with VPC + EC2 + RDS
- ๐ฆ Create your first reusable module
- ๐ Set up CI/CD pipeline with GitHub Actions or GitLab CI
- ๐ข Explore advanced patterns: workspaces, remote state sharing, policy enforcement
Happy Terraforming! ๐