You are viewing a preview of this lesson. Sign in to start learning
Back to USMLE

Anatomy & Physiology

Study human body structure and functional systems comprehensively

Cardiovascular Physiology: The Heart and Circulation

Master cardiovascular physiology with free flashcards and spaced repetition practice. This lesson covers cardiac anatomy, the cardiac cycle, electrical conduction, hemodynamics, and regulation of blood pressureβ€”essential concepts for USMLE Step 1 success and clinical medicine.

Welcome to Cardiovascular Physiology πŸ«€

The cardiovascular system is the body's delivery network, transporting oxygen, nutrients, hormones, and immune cells while removing metabolic waste. Understanding cardiac function is fundamental to diagnosing and treating conditions from heart failure to shock. This lesson will guide you through the mechanical, electrical, and regulatory mechanisms that keep blood flowing through approximately 60,000 miles of vessels in your body!

Core Concepts

1. Cardiac Anatomy and Structure πŸ—οΈ

The heart is a four-chambered muscular pump located in the mediastinum, consisting of:

Chambers:

  • Right atrium (RA): Receives deoxygenated blood from superior and inferior vena cava
  • Right ventricle (RV): Pumps blood to lungs via pulmonary artery (low pressure system)
  • Left atrium (LA): Receives oxygenated blood from pulmonary veins
  • Left ventricle (LV): Pumps blood to systemic circulation via aorta (high pressure system)

Valves (prevent backflow):

  • Atrioventricular (AV) valves: Tricuspid (right), Mitral/Bicuspid (left)
  • Semilunar valves: Pulmonic (right), Aortic (left)
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚        BLOOD FLOW THROUGH HEART            β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                                            β”‚
β”‚  Superior/Inferior Vena Cava               β”‚
β”‚            ↓                               β”‚
β”‚       RIGHT ATRIUM                         β”‚
β”‚            ↓                               β”‚
β”‚      (Tricuspid Valve)                     β”‚
β”‚            ↓                               β”‚
β”‚      RIGHT VENTRICLE                       β”‚
β”‚            ↓                               β”‚
β”‚      (Pulmonic Valve)                      β”‚
β”‚            ↓                               β”‚
β”‚      Pulmonary Artery β†’ 🫁 LUNGS          β”‚
β”‚            ↓                               β”‚
β”‚      Pulmonary Veins                       β”‚
β”‚            ↓                               β”‚
β”‚       LEFT ATRIUM                          β”‚
β”‚            ↓                               β”‚
β”‚       (Mitral Valve)                       β”‚
β”‚            ↓                               β”‚
β”‚       LEFT VENTRICLE                       β”‚
β”‚            ↓                               β”‚
β”‚       (Aortic Valve)                       β”‚
β”‚            ↓                               β”‚
β”‚         AORTA β†’ Body πŸ«€                    β”‚
β”‚                                            β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Wall Layers (from inside out):

  1. Endocardium: Smooth inner lining
  2. Myocardium: Thick muscular layer (thickest in LV)
  3. Epicardium: Visceral pericardium

πŸ’‘ Tip: Remember valve locations with "Try Pulling My Aorta" = Tricuspid, Pulmonic, Mitral, Aortic (from right to left, base to apex)

2. The Cardiac Cycle βš™οΈ

The cardiac cycle represents all mechanical events during one heartbeat, divided into systole (contraction) and diastole (relaxation).

PhaseValves OpenValves ClosedKey Events
1. Ventricular Filling (Diastole)AV valves (tricuspid, mitral)Semilunar valves70% passive filling, 30% atrial kick (atrial systole)
2. Isovolumetric ContractionNONEALLVentricles contract, pressure rises, volume constant
3. Ventricular Ejection (Systole)Semilunar valves (pulmonic, aortic)AV valvesBlood ejected into pulmonary artery and aorta
4. Isovolumetric RelaxationNONEALLVentricles relax, pressure drops, volume constant

Key Parameters:

  • Stroke Volume (SV): Volume ejected per beat (~70 mL)
  • Ejection Fraction (EF): (SV/EDV) Γ— 100 = normally 55-70%
  • End-Diastolic Volume (EDV): Volume before contraction (~120 mL)
  • End-Systolic Volume (ESV): Volume after contraction (~50 mL)
  • Cardiac Output (CO): HR Γ— SV = ~5 L/min at rest
PRESSURE-VOLUME LOOP (Left Ventricle)

Pressure
(mmHg)
  120β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”(3)                     
     β”‚         β”‚β•²  Ejection            
     β”‚         β”‚ β•²                     
   80β”‚         β”‚  β•²(4)                 
     β”‚         β”‚   β•²                   
     β”‚    (2)  β”‚    β•²                  
   40β”‚    β•±    β”‚     β•²                 
     β”‚   β•±     β”‚      β•²                
     β”‚  β•±      β”‚       β•²               
    0β”œβ”€β•±β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β•²β”€β”€β”€β”€β”€β”€        
     β”‚(1)              (1)             
     0    50   100  150   Volume (mL)  
                                        
(1) Filling                             
(2) Isovolumetric Contraction           
(3) Ejection                            
(4) Isovolumetric Relaxation            

Heart Sounds:

  • S1 ("lub"): Closure of AV valves (start of systole)
  • S2 ("dub"): Closure of semilunar valves (start of diastole)
  • S3: Ventricular filling (normal in young, pathologic in adults = volume overload)
  • S4: Atrial contraction against stiff ventricle (always pathologic = decreased compliance)

🧠 Mnemonic: "S1 S2 S3 S4" = "Systole, Semilunar, Swishing blood, Stiff ventricle"

3. Cardiac Electrical Conduction System ⚑

The heart generates its own electrical impulses through specialized pacemaker cells and conducting fibers.

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚     ELECTRICAL CONDUCTION PATHWAY          β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

    (1) SA NODE (pacemaker) 🎯
         60-100 bpm
            ↓
            ↓ (spreads through atria)
            ↓
    (2) AV NODE ⏸️
         40-60 bpm
         (delays 0.1 sec)
            ↓
    (3) BUNDLE OF HIS
            ↓
       β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”€β”
       ↓         ↓
  (4) LEFT    RIGHT
    BUNDLE   BUNDLE
    BRANCH   BRANCH
       ↓         ↓
    (5) PURKINJE FIBERS
         20-40 bpm
         ↓         ↓
    VENTRICULAR MYOCARDIUM
       contracts apex β†’ base

Key Conduction Properties:

StructureIntrinsic Rate (bpm)Function
SA Node60-100Primary pacemaker, located in right atrium
AV Node40-60Delays impulse (allows atrial kick), backup pacemaker
Bundle of His20-40Transmits impulse to ventricles
Bundle Branches20-40Right and left pathways down septum
Purkinje Fibers20-40Rapid conduction to ventricular muscle

Action Potential Phases (Ventricular Myocyte):

PhaseIon MovementDescription
0 - Rapid DepolarizationNa⁺ influx (fast channels)Rapid upstroke
1 - Early RepolarizationK⁺ efflux beginsBrief dip
2 - PlateauCa²⁺ influx = K⁺ effluxSustained depolarization (250-300 ms)
3 - RepolarizationK⁺ efflux dominatesReturn to resting
4 - Resting PotentialNa⁺/K⁺ ATPase active-90 mV maintained

πŸ’‘ Clinical Pearl: The long plateau phase (Phase 2) prevents tetanic contractions and ensures the ventricles have time to refill between beats!

4. Hemodynamics and Blood Pressure 🌊

Ohm's Law Applied to Circulation:

Flow (Q) = Ξ”Pressure (Ξ”P) / Resistance (R)

Cardiac Output Determinants:

CO = HR Γ— SV

Where Stroke Volume depends on:

  1. Preload (venous return/EDV) - Frank-Starling mechanism
  2. Afterload (aortic pressure/systemic vascular resistance)
  3. Contractility (intrinsic strength of contraction)

Frank-Starling Law: ⬆️ venous return β†’ ⬆️ EDV β†’ ⬆️ sarcomere stretch β†’ ⬆️ force of contraction β†’ ⬆️ SV

FRANK-STARLING CURVE

Stroke
Volume
   ↑    Normal
   β”‚      ╱────
   β”‚    β•±
   β”‚  β•±  Decreased
   β”‚β•±    Contractility
   β”‚    ╱────
   β”‚  β•±
   β”‚β•±
   └──────────────→
      Preload (EDV)

Poiseuille's Law (Resistance):

R = (8 Γ— Ξ· Γ— L) / (Ο€ Γ— r⁴)

Where:

  • Ξ· = viscosity
  • L = vessel length
  • r = radius (most important factor - raised to 4th power!)

πŸ’‘ Key Insight: Doubling vessel radius decreases resistance by 16-fold (2⁴ = 16)!

Blood Pressure Calculation:

Mean Arterial Pressure (MAP) = CO Γ— Total Peripheral Resistance (TPR)

Or: MAP = Diastolic BP + 1/3(Systolic BP - Diastolic BP)

Normal MAP: 70-100 mmHg (minimum 60 mmHg needed for organ perfusion)

5. Regulation of Cardiovascular Function πŸŽ›οΈ

Autonomic Nervous System Control:

SystemReceptorsHeart RateContractilityVascular Effect
Sympathetic (β₁)Norepinephrine, Epinephrine⬆️ Increase⬆️ IncreaseVasoconstriction (α₁)
Parasympathetic (Mβ‚‚)Acetylcholine⬇️ Decrease⬇️ Decrease (atria only)Minimal effect

Baroreceptor Reflex:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚      BARORECEPTOR REFLEX                   β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

    ⬆️ Blood Pressure Detected
            ↓
    Baroreceptors (carotid sinus,
     aortic arch) fire MORE
            ↓
    Signal to Medulla (NTS)
            ↓
       β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”€β”
       ↓         ↓
  ⬆️ Vagal    ⬇️ Sympathetic
   Output     Output
       ↓         ↓
    ⬇️ HR    ⬇️ Contractility
            ⬇️ TPR
            ↓
    ⬇️ Blood Pressure (back to normal)

Hormonal Regulation:

  1. Renin-Angiotensin-Aldosterone System (RAAS):

    • ⬇️ Renal perfusion β†’ Renin release
    • Angiotensinogen β†’ Angiotensin I (via Renin)
    • Angiotensin I β†’ Angiotensin II (via ACE in lungs)
    • Angiotensin II: vasoconstriction + aldosterone release
    • Aldosterone: ⬆️ Na⁺/Hβ‚‚O retention β†’ ⬆️ blood volume
  2. Atrial Natriuretic Peptide (ANP):

    • Released when atria stretch (⬆️ blood volume)
    • Promotes Na⁺ excretion β†’ ⬇️ blood volume β†’ ⬇️ BP
  3. Antidiuretic Hormone (ADH/Vasopressin):

    • Released with ⬇️ blood volume or ⬆️ osmolarity
    • ⬆️ Hβ‚‚O reabsorption in kidneys + vasoconstriction

πŸ€” Did you know? Your heart beats approximately 100,000 times per day, pumping about 2,000 gallons (7,500 liters) of blood through your circulatory system!

6. Coronary Circulation πŸ«€

The heart muscle itself receives blood through coronary arteries:

  • Left Main Coronary Artery β†’ branches into:
    • Left Anterior Descending (LAD): Supplies anterior LV and septum
    • Left Circumflex (LCx): Supplies lateral and posterior LV
  • Right Coronary Artery (RCA): Supplies RV, inferior LV, SA and AV nodes (usually)

πŸ’‘ Clinical Pearl: The LAD is nicknamed the "widow maker" because occlusion causes extensive anterior MI with high mortality!

Coronary Blood Flow Timing:

  • Occurs primarily during diastole (ventricles relaxed)
  • LV subendocardium most vulnerable to ischemia (highest compression during systole)
  • Regulated by local metabolic factors (adenosine, COβ‚‚, H⁺)

Examples with Explanations

Example 1: Calculating Cardiac Output πŸ“Š

Scenario: A patient has a heart rate of 75 bpm and a stroke volume of 80 mL. What is their cardiac output?

Solution:

StepCalculationResult
1Use formula: CO = HR Γ— SV-
2CO = 75 beats/min Γ— 80 mL/beat6000 mL/min
3Convert to liters6.0 L/min

Explanation: Normal resting cardiac output is approximately 5 L/min, so this patient's CO is slightly elevated, which could be normal during mild exercise or stress. CO can increase 4-5 fold during maximal exercise in trained athletes!

Example 2: Understanding the Frank-Starling Mechanism πŸ’ͺ

Scenario: A patient receives IV fluids, increasing their venous return. What happens to stroke volume and why?

Explanation:

⬆️ IV Fluids β†’ ⬆️ Blood Volume β†’ ⬆️ Venous Return β†’ ⬆️ Preload (EDV)

When ventricular filling increases:

  1. Sarcomeres stretch to optimal length (2.0-2.4 ΞΌm)
  2. More actin-myosin cross-bridge formation possible
  3. ⬆️ Force of contraction (intrinsic property - NO neural input needed)
  4. ⬆️ Stroke Volume β†’ ⬆️ Cardiac Output

This is the Frank-Starling mechanism - the heart's intrinsic ability to adapt output to venous return!

⚠️ Important Limitation: In heart failure, the curve flattens and shifts right. Excessive preload can lead to pulmonary edema without improving CO.

Example 3: Baroreceptor Response to Standing 🧍

Scenario: You stand up quickly from lying down. Trace the cardiovascular response.

Step-by-step Response:

TimeEventMechanism
0 secStand up β†’ blood pools in legsGravity effect
1-2 sec⬇️ Venous return β†’ ⬇️ CO β†’ ⬇️ BPDecreased preload
2-3 secBaroreceptors fire LESSDetect ⬇️ pressure in carotid/aorta
3-5 secMedulla responds⬇️ Vagal, ⬆️ Sympathetic output
5-10 sec⬆️ HR, ⬆️ contractility, vasoconstrictionCompensatory mechanisms
10+ secBP returns to normalHomeostasis restored

Explanation: This rapid adjustment usually happens unconsciously. If the baroreceptor reflex fails (autonomic dysfunction), orthostatic hypotension occurs - causing dizziness or fainting upon standing.

Example 4: Resistance and Vessel Radius πŸ”¬

Scenario: Atherosclerosis reduces an artery's radius from 2 mm to 1 mm. How does this affect resistance and flow?

Solution using Poiseuille's Law:

R ∝ 1/r⁴

If radius decreases from 2 mm to 1 mm (50% reduction):

  • New radius = 1/2 original
  • New resistance = 1/(1/2)⁴ = 1/(1/16) = 16 Γ— original resistance

Effect on Flow:

Q = Ξ”P/R

If Ξ”P stays constant and R increases 16-fold:

  • New flow = 1/16 of original flow (93.75% reduction!)

Explanation: This dramatic example shows why even modest arterial narrowing severely reduces blood flow. In reality, compensatory mechanisms (increased pressure, collateral vessels) partially offset this, but it illustrates why coronary stenosis >70% typically causes symptoms during exertion.

Common Mistakes ⚠️

Mistake 1: Confusing Systole with Diastole Timing

❌ Wrong: "S1 occurs during diastole" βœ… Right: "S1 marks the START of systole (AV valves close as ventricles contract)"

Why it matters: Understanding timing is critical for interpreting heart sounds, murmurs, and ECG correlations.

Mistake 2: Misunderstanding Ejection Fraction

❌ Wrong: "Ejection fraction is the percentage of blood ejected from the body" βœ… Right: "Ejection fraction is the percentage of EDV ejected per beat (SV/EDV Γ— 100)"

Example: If EDV = 120 mL and SV = 70 mL, then EF = (70/120) Γ— 100 = 58% (normal). The heart NEVER ejects all blood - ESV remains (~50 mL).

Mistake 3: Forgetting the Fourth Power in Poiseuille's Law

❌ Wrong: "Doubling vessel radius doubles blood flow" βœ… Right: "Doubling vessel radius increases flow 16-fold (assuming constant pressure)"

Remember: Small changes in vessel diameter have HUGE effects on resistance and flow!

Mistake 4: Mixing Up Preload and Afterload

❌ Wrong: "Aortic stenosis increases preload" βœ… Right: "Aortic stenosis increases afterload (resistance to ejection)"

Definitions:

  • Preload = ventricular stretch before contraction (β‰ˆ EDV)
  • Afterload = resistance ventricle must overcome to eject blood (β‰ˆ aortic pressure for LV)

Mistake 5: Assuming Parasympathetic Control of Contractility

❌ Wrong: "Vagal stimulation decreases ventricular contractility" βœ… Right: "Vagal stimulation mainly affects HR and atrial contractility; minimal ventricular effect"

Why: Ventricular myocardium has few parasympathetic receptors. Sympathetic stimulation (β₁) is the primary controller of ventricular contractility.

Key Takeaways 🎯

  1. Cardiac anatomy: Four chambers, four valves, three wall layers - blood flows right side (lungs) β†’ left side (body)

  2. Cardiac cycle: Diastole (filling) β†’ Isovolumetric contraction β†’ Systole (ejection) β†’ Isovolumetric relaxation

  3. Electrical conduction: SA node (pacemaker) β†’ AV node (delay) β†’ Bundle of His β†’ Bundle branches β†’ Purkinje fibers

  4. Cardiac output: CO = HR Γ— SV; SV depends on preload, afterload, and contractility

  5. Frank-Starling Law: ⬆️ Preload β†’ ⬆️ Sarcomere stretch β†’ ⬆️ Contractility β†’ ⬆️ SV (intrinsic adaptation)

  6. Hemodynamics: Flow = Ξ”P/R; Resistance ∝ 1/r⁴ (radius is most important factor)

  7. Blood pressure: MAP = CO Γ— TPR; regulated by baroreceptors, autonomic nervous system, and hormones (RAAS, ANP, ADH)

  8. Autonomic control: Sympathetic (⬆️ HR, contractility, vasoconstriction); Parasympathetic (⬇️ HR)

  9. Coronary flow: Occurs mainly during diastole; LAD supplies anterior wall, RCA supplies inferior wall

  10. Clinical relevance: Understanding these mechanisms is essential for interpreting ECGs, heart sounds, hemodynamic monitoring, and pharmacological interventions

πŸ“‹ Quick Reference Card: Cardiovascular Physiology

Normal CO~5 L/min (HR Γ— SV)
Normal EF55-70%
Normal MAP70-100 mmHg
SA Node Rate60-100 bpm
AV Node Delay0.1 seconds
S1 SoundAV valve closure (start systole)
S2 SoundSemilunar valve closure (start diastole)
PreloadVentricular EDV (venous return)
AfterloadResistance to ejection (aortic pressure)
Flow EquationQ = Ξ”P/R
ResistanceR ∝ 1/r⁴ (radius to 4th power!)
MAP FormulaDBP + 1/3(SBP - DBP)
Sympathetic (β₁)⬆️ HR, ⬆️ contractility
Parasympathetic (Mβ‚‚)⬇️ HR (vagus nerve)
Coronary FlowPeaks during diastole

🧠 Master Mnemonic - "Try Pulling My Aorta":
Tricuspid β†’ Pulmonic β†’ Mitral β†’ Aortic (valve sequence)

🧠 Coronary Arteries - "LAD = Left Anterior Die":
Occlusion of LAD causes most lethal MIs (anterior wall)

🧠 Action Potential Phases - "No K Ca K K":
Phase 0: Na in β†’ Phase 1: K out β†’ Phase 2: Ca in β†’ Phase 3: K out β†’ Phase 4: K leak

πŸ“š Further Study

  1. Cardiovascular Physiology Concepts - https://www.cvphysiology.com/ (Excellent interactive modules on hemodynamics, cardiac function, and regulation)

  2. Khan Academy Medicine - Circulatory System - https://www.khanacademy.org/science/health-and-medicine/circulatory-system (Free video lectures with clear animations of cardiac cycle and electrical conduction)

  3. USMLE-Rx Express - Cardiovascular Physiology - https://www.usmle-rx.com/ (High-yield review questions and explanations specifically for Step 1 preparation)


πŸ’ͺ You've completed Cardiovascular Physiology! This foundation will serve you throughout your medical training - from interpreting ECGs and echocardiograms to managing shock and heart failure. Keep reviewing with spaced repetition, and these concepts will become second nature! πŸ«€βœ¨

Practice Questions

Test your understanding with these questions:

Q1: The primary pacemaker of the heart is the {{1}} node.
A: SA
Q2: Fill in the blank: The volume of blood ejected from the ventricle with each heartbeat is called {{1}} volume.
A: stroke
Q3: The {{1}} valve separates the left atrium from the left ventricle.
A: mitral
Q4: The Frank-Starling mechanism states that increased venous return leads to increased {{1}} and therefore increased stroke volume.
A: preload
Q5: The electrical delay at the AV node allows time for complete {{1}} contraction before ventricular systole begins.
A: atrial