Biochemistry & Molecular Biology
Master cellular processes, metabolism, and genetic principles
Biochemistry & Molecular Biology for USMLE
Master the fundamentals of biochemistry and molecular biology with free flashcards and evidence-based learning strategies. This lesson covers metabolic pathways, enzyme kinetics, DNA replication, protein synthesis, and cell signalingโessential concepts for USMLE Step 1 success and clinical practice.
Welcome
Welcome to Biochemistry & Molecular Biology! ๐งฌ This discipline forms the molecular foundation of medicine, explaining how cells function at the chemical level. Understanding these concepts is crucial for interpreting laboratory values, recognizing metabolic disorders, and comprehending drug mechanisms. This lesson synthesizes high-yield topics frequently tested on USMLE Step 1, with emphasis on clinical correlations that will serve you throughout your medical career.
Core Concepts
1. Enzyme Kinetics and Inhibition ๐งช
Enzymes are biological catalysts that accelerate chemical reactions by lowering activation energy. Understanding enzyme kinetics is essential for pharmacology and understanding metabolic regulation.
Michaelis-Menten Kinetics
The Michaelis-Menten equation describes the relationship between substrate concentration and reaction velocity:
V = (Vmax ร [S]) / (Km + [S])
Where:
- V = reaction velocity
- Vmax = maximum velocity at substrate saturation
- [S] = substrate concentration
- Km = Michaelis constant (substrate concentration at ยฝ Vmax)
๐ก Key Insight: Km represents enzyme affinity for substrate. LOW Km = HIGH affinity (enzyme binds substrate tightly). HIGH Km = LOW affinity (enzyme binds substrate weakly).
| Parameter | Meaning | Clinical Significance |
|---|---|---|
| Vmax | Maximum reaction rate | Reflects enzyme concentration |
| Km | Substrate conc. at ยฝ Vmax | Indicates enzyme-substrate affinity |
| Kcat | Turnover number | Catalytic efficiency per enzyme molecule |
Types of Enzyme Inhibition
ENZYME INHIBITION PATTERNS โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ โ โ COMPETITIVE NON-COMPETITIVE โ โ โ โ Substrate Substrate โ โ โ โ โ โ โโโโโ โโโโโ โ โ Iโโโ E โโโS Sโโโ E โโโI โ โ โโโโโ โโโโโ โ โ โ โ โ โข Km increases I (allosteric) โ โ โข Vmax unchanged โ โ โข Overcome with โ[S] โข Km unchanged โ โ โข Vmax decreases โ โ โข Cannot overcome โ โ โ โ UNCOMPETITIVE MIXED โ โ โ โ Substrate Substrate โ โ โ โ โ โ Sโโโโโโโ โโโโโโโI โ โ โ E โโโI Iโโโ E โโโS โ โ โโโโโ โโโโโ โ โ โ โ โข Binds ES complex โข Binds E or ES โ โ โข Km & Vmax decrease โข Both Km & Vmax โ โ โข Rare in biology affected variably โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
๐ง Mnemonic - COMPETITIVE: "Can Overcome with More substrate, Preserves Vmax, Elevates Km, Tries to Imitate substrate, Takes Its place in actiVe site, Example: Methotrexate (folic acid analog)"
๐ค Did you know? Aspirin is an irreversible inhibitor of COX enzymes, forming a covalent bond that permanently inactivates the enzyme. Platelets cannot synthesize new COX, explaining why aspirin's antiplatelet effect lasts 7-10 days (the lifespan of platelets).
2. Glycolysis and Gluconeogenesis โก
Glycolysis is the metabolic pathway that converts glucose to pyruvate, generating ATP and NADH. It occurs in the cytoplasm and doesn't require oxygen.
Glycolysis Overview
GLYCOLYSIS PATHWAY (10 steps)
Glucose (6C)
โ โ ATP (Hexokinase/Glucokinase)
โ
G6P โ (branch to PPP/glycogen)
โ
F6P โ โ ATP (PFK-1) โญ RATE-LIMITING
โ
F-1,6-BP
โ
โโโโดโโโ (Aldolase splits)
โ โ
DHAP G3P
โ โ
โโโโ G3P (ร2) โ NAD+ โ NADH
โ
1,3-BPG โ substrate-level phosphorylation
โ โ ATP (ร2)
โ
3PG
โ
2PG
โ
PEP โ H2O released
โ โ ATP (ร2) (Pyruvate kinase)
โ
PYRUVATE (3C) ร2
๐ NET YIELD per glucose:
โข 2 ATP (4 produced - 2 consumed)
โข 2 NADH
โข 2 Pyruvate
Key Regulatory Enzymes
| Enzyme | Reaction | Activated By | Inhibited By |
|---|---|---|---|
| Hexokinase | Glucose โ G6P | โ | G6P (product inhibition) |
| Glucokinase | Glucose โ G6P (liver) | Insulin | F6P (via regulatory protein) |
| PFK-1 | F6P โ F-1,6-BP | AMP, F-2,6-BP | ATP, citrate |
| Pyruvate kinase | PEP โ Pyruvate | F-1,6-BP (feedforward) | ATP, alanine, acetyl-CoA |
๐ก Clinical Pearl: Hexokinase (most tissues) has LOW Km (high affinity) and is saturated at normal glucose levels. Glucokinase (liver, pancreatic ฮฒ-cells) has HIGH Km (low affinity) and acts as a "glucose sensor," with activity proportional to glucose concentration. This explains why the liver increases glucose uptake after meals.
Gluconeogenesis
Gluconeogenesis is the synthesis of glucose from non-carbohydrate precursors (lactate, amino acids, glycerol). It's essentially glycolysis in reverse, but uses different enzymes to bypass irreversible steps.
GLUCONEOGENESIS BYPASS ENZYMES
GLUCOSE
โ
G6Pase โญ (ER lumen, liver/kidney only)
โ
G6P
โ
F6P
โ
F-1,6-BPase โญ (rate-limiting)
โ
F-1,6-BP
โ
DHAP + G3P
โ
1,3-BPG
โ
PEP
โ
PEPCK โญ (uses GTP)
โ
Oxaloacetate (in mitochondria)
โ
Pyruvate carboxylase โญ (uses ATP, biotin)
โ
PYRUVATE
โ
(from lactate, alanine)
๐ง Remember: "Pathway Goes From Liver"
P = PEPCK
G = Glucose-6-Phosphatase
F = Fructose-1,6-Bisphosphatase
L = (requires these in) Liver
โ ๏ธ Critical Concept: Gluconeogenesis requires 4 ATP + 2 GTP + 2 NADH to make one glucose (energy investment of ~6 ATP), while glycolysis generates only 2 ATP. This makes senseโreversing a spontaneous process requires energy input.
3. Citric Acid Cycle (TCA/Krebs Cycle) ๐
The citric acid cycle is the central metabolic hub that oxidizes acetyl-CoA to COโ, generating reduced coenzymes (NADH, FADHโ) for the electron transport chain.
CITRIC ACID CYCLE
Acetyl-CoA (2C)
โ
โ + Oxaloacetate (4C)
CITRATE (6C) โ Citrate synthase
โ
โ
Isocitrate
โ โ NAD+ โ NADH + COโ
โ (Isocitrate dehydrogenase) โญ
ฮฑ-Ketoglutarate (5C)
โ โ NAD+ โ NADH + COโ
โ (ฮฑ-Ketoglutarate dehydrogenase) โญ
Succinyl-CoA (4C)
โ โ GTP (substrate-level phosphorylation)
โ
Succinate
โ โ FAD โ FADHโ
โ (Succinate dehydrogenase)
Fumarate
โ + HโO
โ
Malate
โ โ NAD+ โ NADH
โ
Oxaloacetate (regenerated)
โ
โโโโ (cycle continues)
๐ NET YIELD per Acetyl-CoA:
โข 3 NADH (โ 7.5 ATP)
โข 1 FADHโ (โ 1.5 ATP)
โข 1 GTP (= 1 ATP)
โข 2 COโ
TOTAL: ~10 ATP per acetyl-CoA
๐ง Mnemonic - TCA Intermediates: "Citrate Is Krebs' Starting Substrate For Making Oxaloacetate"
- Citrate โ Isocitrate โ ฮฑ-Ketoglutarate โ Succinyl-CoA โ Succinate โ Fumarate โ Malate โ Oxaloacetate
๐ก Regulation: The cycle is activated when energy is needed (โ ADP, โ Caยฒโบ, โ NADโบ) and inhibited when energy is abundant (โ ATP, โ NADH). The three rate-limiting enzymes are:
- Citrate synthase (inhibited by citrate, ATP, NADH)
- Isocitrate dehydrogenase (activated by ADP, Caยฒโบ; inhibited by ATP, NADH)
- ฮฑ-Ketoglutarate dehydrogenase (inhibited by succinyl-CoA, NADH)
4. Electron Transport Chain and Oxidative Phosphorylation ๐
The electron transport chain (ETC) consists of four protein complexes in the inner mitochondrial membrane that transfer electrons from NADH and FADHโ to Oโ, pumping protons to create an electrochemical gradient.
ELECTRON TRANSPORT CHAIN INTERMEMBRANE SPACE (high [Hโบ]) โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ Hโบ Hโบ Hโบ Hโบ Hโบ Hโบ Hโบ โ โ โ โ โ โ โ โ โ โ โโโโโผโโโโผโโโโผโโโโโโโผโโโโผโโโโโผโโโโผโโโโโโโโโโค โ โ I โ โ III โ โ IV โ โ V โ โ โ โ โ โ โ โ โ โ โ โ โ eโปโ UQ โCyt cโ eโปโ Oโ ATPโADP+Pi โ โ โ โ โ โ โ NADH FADHโ HโO โ โ โ โ MITOCHONDRIAL MATRIX (low [Hโบ]) โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ Complex I: NADH โ UQ (pumps 4 Hโบ) Complex II: FADHโ โ UQ (no Hโบ pumped) Complex III: UQ โ Cyt c (pumps 4 Hโบ) Complex IV: Cyt c โ Oโ (pumps 2 Hโบ) Complex V: ATP synthase (uses Hโบ gradient) ๐ฐ ATP YIELD: โข NADH โ 2.5 ATP โข FADHโ โ 1.5 ATP โข Complete glucose oxidation โ ~30 ATP
๐ง Try this: Calculate ATP from complete glucose oxidation:
- Glycolysis: 2 ATP + 2 NADH (โ 5 ATP) = 7 ATP
- Pyruvate โ Acetyl-CoA: 2 NADH (โ 5 ATP) = 5 ATP
- TCA cycle (ร2): 6 NADH (โ 15 ATP) + 2 FADHโ (โ 3 ATP) + 2 GTP = 20 ATP
- Total: ~32 ATP (accounting for transport costs)
ETC Inhibitors and Uncouplers
| Agent | Mechanism | Clinical Context |
|---|---|---|
| Rotenone | Inhibits Complex I | Pesticide, Parkinson model |
| Cyanide, CO, HโS | Inhibit Complex IV | Poisons (block Oโ binding) |
| Oligomycin | Inhibits ATP synthase | Research tool |
| DNP, Aspirin | Uncouplers (โ permeability to Hโบ) | Hyperthermia, weight loss (dangerous) |
| Atractyloside | Inhibits ATP/ADP translocase | Plant toxin |
โ ๏ธ Toxicology Pearl: Cyanide poisoning presents with cherry-red skin (tissues can't use Oโ, so venous blood remains oxygenated), lactic acidosis, and almond breath odor. Treatment includes hydroxocobalamin or sodium thiosulfate.
5. DNA Replication ๐งฌ
DNA replication is semiconservativeโeach new double helix contains one original strand and one newly synthesized strand.
DNA REPLICATION FORK
5' โโโโโโโโโโโโโโโโ 3' (Leading strand)
โ โ โ โ โ โ
3' โโ CONTINUOUS synthesis
REPLICATION FORK
โฑ โฒ
โฑ โฒ
5'โโฑ โฒโ3' (Lagging strand)
โฑ โฒ
3'โโฑ โโ โโ โโโฒโ5'
Okazaki fragments
(discontinuous)
๐ง KEY ENZYMES:
โโโโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ ENZYME โ FUNCTION โ
โโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ Helicase โ Unwinds DNA double helix โ
โ SSB proteins โ Stabilize single strands โ
โ Primase โ Synthesizes RNA primers โ
โ DNA Pol III โ Main synthesis enzyme โ
โ DNA Pol I โ Removes primers, fills gapsโ
โ Ligase โ Seals nicks in backbone โ
โ Topoisomerase โ Relieves supercoiling โ
โโโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
๐ก Key Concept: DNA polymerase can only add nucleotides to a 3'-OH group (5'โ3' synthesis) and requires a primer. This explains why:
- Leading strand is continuous
- Lagging strand is discontinuous (Okazaki fragments)
- RNA primers are needed
๐ง Mnemonic - Replication Enzymes: "Help Stop Primer DNA Problems, Ligate To-fix"
- Helicase, SSB, Primase, DNA Pol III, DNA Pol I, Ligase, Topoisomerase
Replication Errors and Repair
| Mechanism | Function | Clinical Significance |
|---|---|---|
| Proofreading (3'โ5' exonuclease) | DNA Pol III removes wrong nucleotide | Primary error prevention |
| Mismatch repair | Fixes base-pair mismatches post-replication | Defect โ Lynch syndrome (HNPCC) |
| Base excision repair | Removes damaged bases | Fixes deamination, oxidation |
| Nucleotide excision repair | Removes thymine dimers | Defect โ Xeroderma pigmentosum |
| NHEJ/Homologous recombination | Repairs double-strand breaks | Defects โ radiosensitivity, cancer |
๐ค Did you know? Telomerase is active in germ cells, stem cells, and ~90% of cancers, but not in most somatic cells. This is why normal cells have a limited replicative capacity (Hayflick limit), while cancer cells can divide indefinitely.
6. Transcription and RNA Processing ๐
Transcription synthesizes RNA from a DNA template using RNA polymerase.
Prokaryotic vs Eukaryotic Transcription
| Feature | Prokaryotes | Eukaryotes |
|---|---|---|
| RNA polymerase | Single enzyme | Three types (Pol I, II, III) |
| Promoter | -10 (Pribnow), -35 box | TATA box (-25), CAAT box |
| Transcription factors | Sigma factor | Multiple (TFIID, etc.) |
| Location | Cytoplasm | Nucleus |
| RNA processing | None (coupled translation) | 5' cap, 3' poly-A tail, splicing |
Eukaryotic RNA Processing
RNA PROCESSING STEPS
PRIMARY TRANSCRIPT (pre-mRNA)
โ
โโโ 5' CAPPING (7-methylguanosine)
โ (protects from degradation)
โ
โโโ SPLICING (removes introns)
โ โ
โ โโโ Spliceosome (snRNPs)
โ recognizes splice sites:
โ โข 5' splice: GU
โ โข 3' splice: AG
โ โข Branch point: A
โ
โโโ 3' POLYADENYLATION
(adds ~200 A residues)
(increases stability)
โ
MATURE mRNA
โ
โโโ Exported to cytoplasm
for translation
๐ง Remember: "CAP it, SPLICE it, Add poly-A"
๐ก Alternative Splicing: A single gene can produce multiple protein isoforms by including or excluding different exons. This explains how ~20,000 human genes produce >100,000 proteins.
โ ๏ธ Clinical Correlation: ฮฒ-thalassemia often results from splicing mutations that cause aberrant intron retention or exon skipping, producing non-functional ฮฒ-globin.
7. Translation and Protein Synthesis ๐ญ
Translation converts mRNA sequence into protein using ribosomes and tRNA.
TRANSLATION PROCESS โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ INITIATION โ โ โ โ 5' Cap โโ mRNA โโ AUG (start codon) โ โ โ โ โ Met-tRNA โ eIF2ยทGTP โ โ โ โ โ 40S + 60S = 80S ribosome โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ ELONGATION โ โ โ โ Ribosome moves 5' โ 3' along mRNA โ โ โ โ A site P site E site โ โ โ โ โ โ โ [new] โ [peptide] โ [exit] โ โ โ โ โข EF-TuยทGTP brings aa-tRNA to A site โ โ โข Peptidyl transferase forms peptide bond โ โ โข EF-GยทGTP translocates ribosome โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ TERMINATION โ โ โ โ Stop codon (UAA, UAG, UGA) โ โ โ โ โ Release factors (RF) โ โ โ โ โ Polypeptide released โ โ โ โ โ Ribosome dissociates โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
๐ง Mnemonic - Stop Codons: "U Are Away, U Are Gone"
- UAA, UAG, UGA
Genetic Code Properties
- Universal: Same code in nearly all organisms
- Degenerate: Multiple codons for most amino acids (wobble base pairing)
- Unambiguous: Each codon specifies only one amino acid
- Non-overlapping: Read in consecutive triplets
๐ก Wobble Hypothesis: The third position (3' end) of the codon can have non-Watson-Crick pairing with tRNA. This explains why:
- Leucine has 6 codons
- Methionine and tryptophan have only 1 codon each
Antibiotic Mechanisms Targeting Translation
| Antibiotic | Target | Mechanism |
|---|---|---|
| Aminoglycosides | 30S ribosome | Cause misreading of mRNA |
| Tetracyclines | 30S ribosome | Block aminoacyl-tRNA binding (A site) |
| Chloramphenicol | 50S ribosome | Inhibit peptidyl transferase |
| Macrolides (Erythromycin) | 50S ribosome | Block translocation |
| Linezolid | 50S ribosome | Prevent 70S initiation complex |
๐ค Did you know? Mitochondria have their own 70S ribosomes (like bacteria), which is why chloramphenicol can cause bone marrow toxicityโit inhibits mitochondrial protein synthesis in eukaryotic cells.
8. Cell Signaling Pathways ๐ก
Cells communicate through signaling molecules (ligands) that bind to receptors, triggering intracellular cascades.
Major Receptor Types
| Receptor Type | Location | Mechanism | Examples |
|---|---|---|---|
| Ion channel-linked | Membrane | Ligand binding opens channel | Nicotinic ACh receptor |
| GPCR (7-transmembrane) | Membrane | Activates G proteins | ฮฒ-adrenergic, muscarinic |
| Enzyme-linked (RTK) | Membrane | Ligand binding activates kinase | Insulin receptor, EGF receptor |
| Nuclear receptors | Cytoplasm/nucleus | Direct gene transcription | Steroid hormones, thyroid hormone |
G-Protein Coupled Receptor Signaling
GPCR SIGNALING CASCADE
Ligand (hormone, NT)
โ
โ (binds)
โโโโโโโโโโโ
โ GPCR โ (7 transmembrane domains)
โโโโโโฌโโโโโ
โ (activates)
โ
G-protein (Gฮฑ, Gฮฒ, Gฮณ)
โ
โโโ Gฮฑs โ โ Adenylyl cyclase โ โ cAMP
โ โ
โ PKA activation
โ โ
โ Phosphorylates targets
โ
โโโ Gฮฑi โ โ Adenylyl cyclase โ โ cAMP
โ
โโโ Gฮฑq โ โ Phospholipase C โ โ IPโ + DAG
โ โ โ
โ โ Caยฒโบ PKC
โ
โโโ Gฮฑโโ/โโ โ Rho pathways
๐ Second Messengers:
โข cAMP
โข cGMP
โข IPโ
โข DAG
โข Caยฒโบ
๐ก Cholera vs Pertussis Toxins:
- Cholera toxin: Permanently activates Gฮฑs (โโโ cAMP) โ massive Clโป/HโO secretion โ watery diarrhea
- Pertussis toxin: Inactivates Gฮฑi (prevents inhibition) โ โโ cAMP โ impaired immune response
Receptor Tyrosine Kinase (RTK) Signaling
RTK PATHWAY (e.g., Insulin Receptor)
Insulin (ligand)
โ
โ (binds)
โโโโโโโโโโโ
โ RTK โ (dimerizes)
โโโโโโฌโโโโโ
โ (autophosphorylation)
โ
Tyrosine residues-POโ
โ
โโโ RAS/MAPK pathway
โ (cell growth/division)
โ
โโโ PI3K/AKT pathway
โ (cell survival, glucose uptake)
โ
โโโ JAK/STAT pathway
(immune response, cell proliferation)
โ ๏ธ CLINICAL: Many oncogenes encode
constitutively active RTKs or
downstream signaling proteins
(e.g., RAS mutations in 30% cancers)
๐ง Try this: Trace the insulin signaling cascade:
- Insulin binds โ RTK dimerization
- Autophosphorylation of tyrosine residues
- IRS-1 (insulin receptor substrate) binds
- PI3K activation โ PIPโ โ PIPโ
- AKT activation
- GLUT4 translocation to membrane
- โ Glucose uptake into muscle/adipose tissue
Examples with Explanations
Example 1: Enzyme Kinetics Problem ๐งฎ
Question: An enzyme has a Km of 10 mM and Vmax of 100 ฮผmol/min. What is the reaction velocity when substrate concentration is 10 mM?
Solution:
Using the Michaelis-Menten equation:
V = (Vmax ร [S]) / (Km + [S])
| Step | Calculation | Result |
|---|---|---|
| 1 | Substitute values | V = (100 ร 10) / (10 + 10) |
| 2 | Simplify numerator | V = 1000 / 20 |
| 3 | Divide | V = 50 ฮผmol/min |
Answer: V = 50 ฮผmol/min (exactly ยฝ Vmax, because [S] = Km)
๐ก Key Insight: When [S] = Km, velocity is always ยฝ Vmax by definition. This is a quick check for exam questions.
Example 2: Glycolysis ATP Calculation ๐
Question: Calculate the net ATP yield from glycolysis when starting with fructose-6-phosphate (F6P) instead of glucose.
Solution:
Normal glycolysis from glucose:
- Investment phase: -2 ATP
- Payoff phase: +4 ATP
- Net: +2 ATP
Starting from F6P (bypasses first step):
- Investment phase: -1 ATP (only PFK-1 uses ATP)
- Payoff phase: +4 ATP (unchanged)
- Net: +3 ATP
Explanation: F6P enters after the first ATP-consuming step (hexokinase), saving one ATP. The downstream reactions remain identical, so you gain an extra ATP compared to starting from glucose.
๐ Real-world application: Fructose from sucrose (table sugar) enters glycolysis at different points in liver vs muscle, affecting ATP yield and metabolic fate. Hepatic fructose metabolism bypasses PFK-1 regulation, contributing to fatty liver disease with excessive fructose consumption.
Example 3: DNA Replication Directionality ๐งฌ
Question: During DNA replication, if the template strand is 3'-TACGGATCG-5', what is the sequence of the newly synthesized strand?
Solution:
| Template (3'โ5') | T | A | C | G | G | A | T | C | G |
|---|---|---|---|---|---|---|---|---|---|
| New strand (5'โ3') | A | T | G | C | C | T | A | G | C |
Answer: 5'-ATGCCTAGC-3'
Explanation:
- DNA polymerase synthesizes 5'โ3'
- Template is read 3'โ5'
- Base pairing rules: A-T, G-C
- New strand is antiparallel and complementary
๐ก Remember: The template strand runs opposite to the direction of synthesis. If confused, always mark the 5' and 3' ends first.
Example 4: Signal Transduction - cAMP Pathway ๐ก
Question: Epinephrine binds to ฮฒ-adrenergic receptors on liver cells. Trace the pathway leading to glucose release.
Solution:
SIGNAL TRANSDUCTION CASCADE
Epinephrine (stress hormone)
โ
โ (binds)
ฮฒ-adrenergic receptor (GPCR)
โ
โ (activates)
Gฮฑs protein (GTP-bound form)
โ
โ (stimulates)
Adenylyl cyclase
โ
โ (produces)
cAMP (from ATP)
โ
โ (activates)
Protein Kinase A (PKA)
โ
โโโ Phosphorylates phosphorylase kinase
โ โ
โ โ (activates)
โ Glycogen phosphorylase
โ โ
โ โ
โ Glycogen โ Glucose-1-P โ G6P โ Glucose
โ
โโโ Phosphorylates glycogen synthase
(INACTIVATES - stops glycogen synthesis)
Result: โ Blood glucose (fight-or-flight response)
Explanation: This cascade demonstrates signal amplificationโone epinephrine molecule can activate many Gฮฑs proteins, each activating multiple adenylyl cyclase molecules, producing thousands of cAMP molecules, activating many PKA enzymes, each phosphorylating multiple target proteins. The result is massive glucose mobilization from a single hormone signal.
๐ค Did you know? This is why epinephrine (adrenaline) injection works so quickly in anaphylaxisโthe signal amplification allows rapid systemic effects from a single molecule trigger.
Common Mistakes
โ ๏ธ Mistake 1: Confusing Km with Kd
- Km = substrate concentration at ยฝ Vmax (enzyme kinetics)
- Kd = dissociation constant (binding affinity)
- They're related but NOT identical. Km includes catalytic rate constants.
โ ๏ธ Mistake 2: Reversing DNA/RNA Polymerase Directionality
- โ WRONG: "Polymerase reads 5'โ3'"
- โ CORRECT: "Polymerase reads template 3'โ5', synthesizes 5'โ3'"
- Mnemonic: Synthesis is always 5'โ3' (adding to 3'-OH group)
โ ๏ธ Mistake 3: Miscounting ATP in Glycolysis
- Don't forget the investment phase uses 2 ATP!
- Common error: reporting 4 ATP instead of net 2 ATP
- Remember: Each glucose yields TWO G3P molecules, so multiply payoff phase by 2
โ ๏ธ Mistake 4: Mixing Up Glucokinase vs Hexokinase
| Feature | Hexokinase | Glucokinase |
|---|---|---|
| Location | Most tissues | Liver, pancreatic ฮฒ-cells |
| Km (affinity) | Low Km (HIGH affinity) | High Km (LOW affinity) |
| Inhibition | Product inhibition (G6P) | Sequestration by regulatory protein |
| Function | Basal glucose uptake | Glucose sensor |
โ ๏ธ Mistake 5: Forgetting Wobble Base Pairing
- The genetic code is degenerate because the 3rd codon position (wobble position) allows non-standard pairing
- This is why most amino acids have multiple codons
- Clinically relevant: Some mutations at wobble positions are silent (don't change amino acid)
โ ๏ธ Mistake 6: Confusing Transcription vs Translation Inhibitors
- Transcription inhibitors: Rifampin (RNA polymerase), Actinomycin D (intercalates DNA)
- Translation inhibitors: All the ribosome-targeting antibiotics
- Don't mix up prokaryotic (70S) vs eukaryotic (80S) ribosome targets!
โ ๏ธ Mistake 7: Misunderstanding Competitive Inhibition
- โ WRONG: "Competitive inhibition decreases Vmax"
- โ CORRECT: "Competitive inhibition increases Km, Vmax unchanged"
- Can be overcome by increasing substrate concentration
Key Takeaways
โ Enzyme kinetics: Km represents substrate affinity (LOW Km = HIGH affinity). Competitive inhibitors increase Km; non-competitive inhibitors decrease Vmax.
โ Glycolysis: Occurs in cytoplasm, produces net 2 ATP + 2 NADH per glucose. Three irreversible steps regulated by hexokinase/glucokinase, PFK-1 (rate-limiting), and pyruvate kinase.
โ Gluconeogenesis: Reverses glycolysis using 4 unique enzymes (pyruvate carboxylase, PEPCK, F-1,6-BPase, G6Pase). Requires 6 ATP equivalents per glucose.
โ TCA cycle: Generates 3 NADH + 1 FADHโ + 1 GTP per acetyl-CoA. Regulated by energy status (ATP/ADP, NADH/NADโบ ratios).
โ Electron transport chain: Four protein complexes pump protons; Complex V (ATP synthase) uses gradient. NADH โ 2.5 ATP, FADHโ โ 1.5 ATP. Complete glucose oxidation โ ~30-32 ATP.
โ DNA replication: Semiconservative, bidirectional, 5'โ3' synthesis only. Leading strand continuous, lagging strand discontinuous (Okazaki fragments). Key enzymes: helicase, primase, DNA Pol III, DNA Pol I, ligase.
โ Transcription: RNA polymerase synthesizes RNA 5'โ3' from DNA template. Eukaryotic processing includes 5' cap, 3' poly-A tail, and splicing (removes introns).
โ Translation: Ribosomes read mRNA 5'โ3' in triplets (codons). Start codon AUG (Met), stop codons UAA/UAG/UGA. Aminoglycosides and tetracyclines target 30S; chloramphenicol and macrolides target 50S.
โ Cell signaling: GPCRs activate G-proteins โ second messengers (cAMP, IPโ, DAG). RTKs autophosphorylate โ activate RAS/MAPK, PI3K/AKT pathways. Nuclear receptors directly regulate transcription.
๐ก For USMLE Success: Focus on rate-limiting enzymes, regulatory mechanisms, clinical correlations (enzyme deficiencies, drug targets), and integration between pathways. Practice calculating ATP yields and tracing signaling cascades.
๐ Quick Reference Card
| Concept | Key Points |
|---|---|
| Enzyme Inhibition | Competitive: โKm, Vmax same | Non-competitive: Vmaxโ, Km same |
| Glycolysis | Glucose โ 2 Pyruvate | Net: 2 ATP, 2 NADH | Rate-limiting: PFK-1 |
| Gluconeogenesis | 4 bypass enzymes | Costs 6 ATP/glucose | Liver & kidney only |
| TCA Cycle | Acetyl-CoA โ 3 NADH, 1 FADHโ, 1 GTP, 2 COโ | ~10 ATP equivalent |
| ETC | NADH โ 2.5 ATP | FADHโ โ 1.5 ATP | Complete oxidation: ~30 ATP |
| DNA Replication | Semiconservative | 5'โ3' synthesis | Leading (continuous) vs Lagging (Okazaki) |
| RNA Processing | 5' cap + 3' poly-A + splicing (remove introns) |
| Translation | Start: AUG | Stop: UAA, UAG, UGA | Ribosomes: 30S+50S=70S (prokaryote), 40S+60S=80S (eukaryote) |
| GPCR Signaling | Gฮฑs โcAMP | Gฮฑi โcAMP | Gฮฑq โIPโ+DAG | PKA/PKC pathways |
| RTK Signaling | Ligand โ dimerization โ autophosphorylation โ RAS/MAPK or PI3K/AKT |
๐ง Master Mnemonic: "Every Good Teacher Tries Demonstrating Real Concepts"
- Enzymes, Glycolysis, TCA, eTC (electron transport), DNA replication, RNA/transcription, Cell signaling
๐ Further Study
NCBI Bookshelf - Biochemistry (Berg, Tymoczko, Stryer): https://www.ncbi.nlm.nih.gov/books/NBK21154/ - Comprehensive free textbook covering all major biochemistry topics with clinical correlations
Khan Academy MCAT Biochemistry: https://www.khanacademy.org/test-prep/mcat/biomolecules - Video lectures and practice questions covering enzyme kinetics, metabolism, molecular biology with excellent visual explanations
PhysiologyWeb - Biochemistry Resources: https://www.physiologyweb.com/ - Detailed metabolic pathway diagrams, enzyme mechanisms, and interactive tutorials for visual learners preparing for board exams